6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Exploring natural odour landscapes: A case study with implications for human-biting insects

      Preprint
      research-article
      * , , *
      bioRxiv
      Cold Spring Harbor Laboratory

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The natural world is full of odours—blends of volatile chemicals emitted by potential sources of food, social partners, predators, and pathogens. Animals rely heavily on these signals for survival and reproduction. Yet we remain remarkably ignorant of the composition of the chemical world. How many compounds do natural odours typically contain? How often are those compounds shared across stimuli? What are the best statistical strategies for discrimination? Answering these questions will deliver crucial insight into how brains can most efficiently encode olfactory information. Here, we undertake the first large-scale survey of vertebrate body odours, a set of stimuli relevant to blood-feeding arthropods. We quantitatively characterize the odour of 64 vertebrate species (mostly mammals), representing 29 families and 13 orders. We confirm that these stimuli are complex blends of relatively common, shared compounds and show that they are much less likely to contain unique components than are floral odours—a finding with implications for olfactory coding in blood feeders and floral visitors. We also find that vertebrate body odours carry little phylogenetic information, yet show consistency within a species. Human odour is especially unique, even compared to the odour of other great apes. Finally, we use our newfound understanding of odour-space statistics to make specific predictions about olfactory coding, which align with known features of mosquito olfactory systems. Our work provides one of the first quantitative descriptions of a natural odour space and demonstrates how understanding the statistics of sensory environments can provide novel insight into sensory coding and evolution.

          Related collections

          Most cited references71

          • Record: found
          • Abstract: found
          • Article: not found

          XCMS: processing mass spectrometry data for metabolite profiling using nonlinear peak alignment, matching, and identification.

          Metabolite profiling in biomarker discovery, enzyme substrate assignment, drug activity/specificity determination, and basic metabolic research requires new data preprocessing approaches to correlate specific metabolites to their biological origin. Here we introduce an LC/MS-based data analysis approach, XCMS, which incorporates novel nonlinear retention time alignment, matched filtration, peak detection, and peak matching. Without using internal standards, the method dynamically identifies hundreds of endogenous metabolites for use as standards, calculating a nonlinear retention time correction profile for each sample. Following retention time correction, the relative metabolite ion intensities are directly compared to identify changes in specific endogenous metabolites, such as potential biomarkers. The software is demonstrated using data sets from a previously reported enzyme knockout study and a large-scale study of plasma samples. XCMS is freely available under an open-source license at http://metlin.scripps.edu/download/.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The global diversity of birds in space and time.

            Current global patterns of biodiversity result from processes that operate over both space and time and thus require an integrated macroecological and macroevolutionary perspective. Molecular time trees have advanced our understanding of the tempo and mode of diversification and have identified remarkable adaptive radiations across the tree of life. However, incomplete joint phylogenetic and geographic sampling has limited broad-scale inference. Thus, the relative prevalence of rapid radiations and the importance of their geographic settings in shaping global biodiversity patterns remain unclear. Here we present, analyse and map the first complete dated phylogeny of all 9,993 extant species of birds, a widely studied group showing many unique adaptations. We find that birds have undergone a strong increase in diversification rate from about 50 million years ago to the near present. This acceleration is due to a number of significant rate increases, both within songbirds and within other young and mostly temperate radiations including the waterfowl, gulls and woodpeckers. Importantly, species characterized with very high past diversification rates are interspersed throughout the avian tree and across geographic space. Geographically, the major differences in diversification rates are hemispheric rather than latitudinal, with bird assemblages in Asia, North America and southern South America containing a disproportionate number of species from recent rapid radiations. The contribution of rapidly radiating lineages to both temporal diversification dynamics and spatial distributions of species diversity illustrates the benefits of an inclusive geographical and taxonomical perspective. Overall, whereas constituent clades may exhibit slowdowns, the adaptive zone into which modern birds have diversified since the Cretaceous may still offer opportunities for diversification.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Inferring the mammal tree: Species-level sets of phylogenies for questions in ecology, evolution, and conservation

              Big, time-scaled phylogenies are fundamental to connecting evolutionary processes to modern biodiversity patterns. Yet inferring reliable phylogenetic trees for thousands of species involves numerous trade-offs that have limited their utility to comparative biologists. To establish a robust evolutionary timescale for all approximately 6,000 living species of mammals, we developed credible sets of trees that capture root-to-tip uncertainty in topology and divergence times. Our “backbone-and-patch” approach to tree building applies a newly assembled 31-gene supermatrix to two levels of Bayesian inference: (1) backbone relationships and ages among major lineages, using fossil node or tip dating, and (2) species-level “patch” phylogenies with nonoverlapping in-groups that each correspond to one representative lineage in the backbone. Species unsampled for DNA are either excluded (“DNA-only” trees) or imputed within taxonomic constraints using branch lengths drawn from local birth–death models (“completed” trees). Joining time-scaled patches to backbones results in species-level trees of extant Mammalia with all branches estimated under the same modeling framework, thereby facilitating rate comparisons among lineages as disparate as marsupials and placentals. We compare our phylogenetic trees to previous estimates of mammal-wide phylogeny and divergence times, finding that (1) node ages are broadly concordant among studies, and (2) recent (tip-level) rates of speciation are estimated more accurately in our study than in previous “supertree” approaches, in which unresolved nodes led to branch-length artifacts. Credible sets of mammalian phylogenetic history are now available for download at http://vertlife.org/phylosubsets, enabling investigations of long-standing questions in comparative biology.
                Bookmark

                Author and article information

                Journal
                bioRxiv
                BIORXIV
                bioRxiv
                Cold Spring Harbor Laboratory
                30 May 2023
                : 2023.05.08.539789
                Affiliations
                Department of Ecology and Evolutionary Biology and Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA 08544
                Author notes
                [†]

                Present address: Biologics, Process Development, and Engineering, Merck & Co., Inc., 2000 Galloping Hill Road, Kenilworth, NJ, USA 07033

                Author contributions

                J.L.Z. and C.S.M. conceived the project and designed and interpreted the experiments. S.M.K. helped with processing of hair samples. J.L.Z. carried out all other aspects of data collection and analysis. J.L.Z. and C.S.M. wrote the paper.

                Article
                10.1101/2023.05.08.539789
                10312452
                37398328
                4815a7f5-07d5-407b-9b17-83069b7446b6

                This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which allows reusers to copy and distribute the material in any medium or format in unadapted form only, for noncommercial purposes only, and only so long as attribution is given to the creator.

                History
                Categories
                Article

                Comments

                Comment on this article