20
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Visualisierung proteinspezifischer Glycosylierung in lebenden Zellen

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references38

          • Record: found
          • Abstract: found
          • Article: not found

          Cross talk between O-GlcNAcylation and phosphorylation: roles in signaling, transcription, and chronic disease.

          O-GlcNAcylation is the addition of β-D-N-acetylglucosamine to serine or threonine residues of nuclear and cytoplasmic proteins. O-linked N-acetylglucosamine (O-GlcNAc) was not discovered until the early 1980s and still remains difficult to detect and quantify. Nonetheless, O-GlcNAc is highly abundant and cycles on proteins with a timescale similar to protein phosphorylation. O-GlcNAc occurs in organisms ranging from some bacteria to protozoans and metazoans, including plants and nematodes up the evolutionary tree to man. O-GlcNAcylation is mostly on nuclear proteins, but it occurs in all intracellular compartments, including mitochondria. Recent glycomic analyses have shown that O-GlcNAcylation has surprisingly extensive cross talk with phosphorylation, where it serves as a nutrient/stress sensor to modulate signaling, transcription, and cytoskeletal functions. Abnormal amounts of O-GlcNAcylation underlie the etiology of insulin resistance and glucose toxicity in diabetes, and this type of modification plays a direct role in neurodegenerative disease. Many oncogenic proteins and tumor suppressor proteins are also regulated by O-GlcNAcylation. Current data justify extensive efforts toward a better understanding of this invisible, yet abundant, modification. As tools for the study of O-GlcNAc become more facile and available, exponential growth in this area of research will eventually take place.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Structure of human O-GlcNAc transferase and its complex with a peptide substrate

            O-GlcNAc transferase (OGT) is an essential mammalian enzyme that couples metabolic status to the regulation of a wide variety of cellular signaling pathways by acting as a nutrient sensor1. OGT catalyzes the transfer of N-acetyl-glucosamine from UDP-GlcNAc to serines and threonines of cytoplasmic, nuclear and mitochondrial proteins2,3, including numerous transcription factors4, tumor suppressors, kinases5, phosphatases1, and histone-modifying proteins6. Aberrant O-GlcNAcylation by OGT has been linked to insulin resistance7, diabetic complications8, cancer9 and neurodegenerative diseases including Alzheimer’s10. Despite the importance of OGT, the details of how it recognizes and glycosylates its protein substrates are largely unknown. We report here two crystal structures of human OGT, as a binary complex with UDP (2.8 A) and a ternary complex with UDP and a peptide substrate (1.95 A). The structures provide clues to the enzyme mechanism, show how OGT recognizes target peptide sequences, and reveal the fold of the unique domain between the two halves of the catalytic region. This information will accelerate the rational design of biological experiments to investigate OGT’s functions and the design of inhibitors for use as cellular probes and to assess its potential as a therapeutic target.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Inverse electron demand Diels-Alder (iEDDA)-initiated conjugation: a (high) potential click chemistry scheme.

              Inverse electron demand Diels-Alder reactions (iEDDA) between 1,2,4,5-tetrazines and olefins have emerged into a state-of-the art concept for the conjugation of biomolecules. Now, this reaction is also increasingly being applied in polymer science and materials science. The orthogonality of this exciting reaction to other well-established click chemistry schemes, its high reaction speed and its biocompatibility are key features of iEDDA making it a powerful alternative to existing ligation chemistries. The intention of this tutorial review is to introduce the reader to the fundamentals of inverse electron demand Diels-Alder additions and to answer the question whether iEDDA chemistry is living up to the criteria for a "click" reaction and can serve as a basis for future applications in post-synthetic modification of materials.
                Bookmark

                Author and article information

                Journal
                Angewandte Chemie
                Angew. Chem.
                Wiley
                00448249
                February 05 2016
                February 05 2016
                January 12 2016
                : 128
                : 6
                : 2303-2308
                Affiliations
                [1 ]Fachbereich Chemie und Konstanz Research School Chemical Biology (KoRS-CB); Universität Konstanz; Universitätsstraße 10 78457 Konstanz Deutschland
                [2 ]Fachbereich Biologie und Graduate School Biological Science; Universität Konstanz; Universitätsstraße 10 78457 Konstanz Deutschland
                [3 ]Department Chemie und Munich Center for Integrated Protein Science and Center for Nanoscience; Ludwig-Maximilians-Universität München; Butenandtstraße 11 81377 München Deutschland
                Article
                10.1002/ange.201503183
                47fb85f0-4ee9-4da3-862d-b5004fbf9d39
                © 2016

                http://doi.wiley.com/10.1002/tdm_license_1

                http://onlinelibrary.wiley.com/termsAndConditions

                History

                Comments

                Comment on this article