8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Human Umbilical Cord Mesenchymal Stem Cells Extricate Bupivacaine-Impaired Skeletal Muscle Function via Mitigating Neutrophil-Mediated Acute Inflammation and Protecting against Fibrosis

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Skeletal muscle injury presents a challenging traumatological dilemma, and current therapeutic options remain mediocre. This study was designed to delineate if engraftment of mesenchymal stem cells derived from umbilical cord Wharton’s jelly (uMSCs) could aid in skeletal muscle healing and persuasive molecular mechanisms. We established a skeletal muscle injury model by injection of myotoxin bupivacaine (BPVC) into quadriceps muscles of C57BL/6 mice. Post BPVC injection, neutrophils, the first host defensive line, rapidly invaded injured muscle and induced acute inflammation. Engrafted uMSCs effectively abolished neutrophil infiltration and activation, and diminished neutrophil chemotaxis, including Complement component 5a (C5a), Keratinocyte chemoattractant (KC), Macrophage inflammatory protein (MIP)-2, LPS-induced CXC chemokine (LIX), Fractalkine, Leukotriene B4 (LTB4), and Interferon-γ, as determined using a Quantibody Mouse Cytokine Array assay. Subsequently, uMSCs noticeably prevented BPVC-accelerated collagen deposition and fibrosis, measured by Masson’s trichrome staining. Remarkably, uMSCs attenuated BPVC-induced Transforming growth factor (TGF)-β1 expression, a master regulator of fibrosis. Engrafted uMSCs attenuated TGF-β1 transmitting through interrupting the canonical Sma- And Mad-Related Protein (Smad)2/3 dependent pathway and noncanonical Smad-independent Transforming growth factor beta-activated kinase (TAK)-1/p38 mitogen-activated protein kinases signaling. The uMSCs abrogated TGF-β1-induced fibrosis by reducing extracellular matrix components including fibronectin-1, collagen (COL) 1A1, and COL10A1. Most importantly, uMSCs modestly extricated BPVC-impaired gait functions, determined using CatWalk™ XT gait analysis. This work provides several innovative insights into and molecular bases for employing uMSCs to execute therapeutic potential through the elimination of neutrophil-mediated acute inflammation toward protecting against fibrosis, thereby rescuing functional impairments post injury.

          Related collections

          Most cited references62

          • Record: found
          • Abstract: found
          • Article: not found

          Integrin-TGF-beta crosstalk in fibrosis, cancer and wound healing.

          Accumulating evidence indicates that there is extensive crosstalk between integrins and TGF-beta signalling. TGF-beta affects integrin-mediated cell adhesion and migration by regulating the expression of integrins, their ligands and integrin-associated proteins. Conversely, several integrins directly control TGF-beta activation. In addition, a number of integrins can interfere with both Smad-dependent and Smad-independent TGF-beta signalling in different ways, including the regulation of the expression of TGF-beta signalling pathway components, the physical association of integrins with TGF-beta receptors and the modulation of downstream effectors. Reciprocal TGF-beta-integrin signalling is implicated in normal physiology, as well as in a variety of pathological processes including systemic sclerosis, idiopathic pulmonary fibrosis, chronic obstructive pulmonary disease and cancer; thus, integrins could provide attractive therapeutic targets to interfere with TGF-beta signalling in these processes.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Human umbilical cord matrix stem cells: preliminary characterization and effect of transplantation in a rodent model of Parkinson's disease.

            The umbilical cord contains an inexhaustible, noncontroversial source of stem cells for therapy. In the U.S., stem cells found in the umbilical cord are routinely placed into bio-hazardous waste after birth. Here, stem cells derived from human umbilical cord Wharton's Jelly, called umbilical cord matrix stem (UCMS) cells, are characterized. UCMS cells have several properties that make them of interest as a source of cells for therapeutic use. For example, they 1) can be isolated in large numbers, 2) are negative for CD34 and CD45, 3) grow robustly and can be frozen/thawed, 4) can be clonally expanded, and 5) can easily be engineered to express exogenous proteins. UCMS cells have genetic and surface markers of mesenchymal stem cells (positive for CD10, CD13, CD29, CD44, and CD90 and negative for CD14, CD33, CD56, CD31, CD34, CD45, and HLA-DR) and appear to be stable in terms of their surface marker expression in early passage (passages 4-8). Unlike traditional mesenchymal stem cells derived from adult bone marrow stromal cells, small populations of UCMS cells express endoglin (SH2, CD105) and CD49e at passage 8. UCMS cells express growth factors and angiogenic factors, suggesting that they may be used to treat neurodegenerative disease. To test the therapeutic value of UCMS cells, undifferentiated human UCMS cells were transplanted into the brains of hemiparkinsonian rats that were not immune-suppressed. UCMS cells ameliorated apomorphine-induced rotations in the pilot test. UCMS cells transplanted into normal rats did not produce brain tumors, rotational behavior, or a frank host immune rejection response. In summary, the umbilical cord matrix appears to be a rich, noncontroversial, and inexhaustible source of primitive mesenchymal stem cells.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Identification of novel TGF-beta /Smad gene targets in dermal fibroblasts using a combined cDNA microarray/promoter transactivation approach.

              Despite major advances in the understanding of the intimate mechanisms of transforming growth factor-beta (TGF-beta) signaling through the Smad pathway, little progress has been made in the identification of direct target genes. In this report, using cDNA microarrays, we have focussed our attention on the characterization of extracellular matrix-related genes rapidly induced by TGF-beta in human dermal fibroblasts and attempted to identify the ones whose up-regulation by TGF-beta is Smad-mediated. For a gene to qualify as a direct Smad target, we postulated that it had to meet the following criteria: (1) rapid (30 min) and significant (at least 2-fold) elevation of steady-state mRNA levels upon TGF-beta stimulation, (2) activation of the promoter by both exogenous TGF-beta and co-transfected Smad3 expression vector, (3) up-regulation of promoter activity by TGF-beta blocked by both dominant-negative Smad3 and inhibitory Smad7 expression vectors, and (4) promoter transactivation by TGF-beta not possible in Smad3(-/-) mouse embryo fibroblasts. Using this stringent approach, we have identified COL1A2, COL3A1, COL6A1, COL6A3, and tissue inhibitor of metalloproteases-1 as definite TGF-beta/Smad3 targets. Extrapolation of this approach to other extracellular matrix-related gene promoters also identified COL1A1 and COL5A2, but not COL6A2, as novel Smad targets. Together, these results represent a significant step toward the identification of novel, early-induced Smad-dependent TGF-beta target genes in fibroblasts.
                Bookmark

                Author and article information

                Journal
                Int J Mol Sci
                Int J Mol Sci
                ijms
                International Journal of Molecular Sciences
                MDPI
                1422-0067
                03 September 2019
                September 2019
                : 20
                : 17
                : 4312
                Affiliations
                [1 ]Department of Medical Research, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan (W.-H.S.) (C.-C.T.)
                [2 ]Stem Cell Research Core Laboratory, Department of Medical Research, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
                [3 ]Department of Orthopedics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan
                [4 ]Center for Shockwave Medicine and Tissue Engineering, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
                [5 ]Department of Obstetrics and Gynecology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan
                [6 ]Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
                [7 ]Department of Biotechnology, Kaohsiung Medical University, Kaohsiung 807, Taiwan
                Author notes
                [* ]Correspondence: pcjchuang@ 123456gmail.com ; Tel.: +886-7-7317123-8899
                Article
                ijms-20-04312
                10.3390/ijms20174312
                6747081
                31484417
                47a9b5a0-d4f1-4d08-bfa9-3fad1ff113d7
                © 2019 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 16 August 2019
                : 29 August 2019
                Categories
                Article

                Molecular biology
                umbilical cord mesenchymal stem cells,neutrophils,inflammation,fibrosis,skeletal muscle injury

                Comments

                Comment on this article