There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.
Abstract
<p class="first" id="d6484826e152">Exposure to airborne fine particles (PM2.5, particulate
matter with aerodynamic diameter
<2.5 μm) severely threatens global human health. Understanding the distribution
and
processes of inhaled PM2.5 in the human body is crucial to clarify the causal links
between PM2.5 pollution and diseases. In contrast to extensive research on the emission
and formation of PM2.5 in the ambient environment, reports about the occurrence and
fate of PM2.5 in humans are still limited, although many studies have focused on the
exposure and adverse effects of PM2.5 with animal models. It has been shown that PM2.5,
especially ultrafine particles (UFPs), have the potential to go across different biological
barriers and translocate into different human organs (i.e., blood circulation, brain,
heart, pleural cavity, and placenta). In this Perspective, we summarize the factors
affecting the internal exposure of PM2.5 and the relevant analytical methodology and
review current knowledge about the exposure pathways and distribution of PM2.5 in
humans. We also discuss the research challenges and call for more studies on the identification
and characterization of key toxic species of PM2.5, quantification of internal exposure
doses in the general population, and further clarification of translocation, metabolism,
and clearance pathways of PM2.5 in the human body. In this way, it is possible to
develop toxicity-based air quality standards instead of the currently used mass-based
standards.
</p>
Summary Background Public health is a priority for the Chinese Government. Evidence-based decision making for health at the province level in China, which is home to a fifth of the global population, is of paramount importance. This analysis uses data from the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2017 to help inform decision making and monitor progress on health at the province level. Methods We used the methods in GBD 2017 to analyse health patterns in the 34 province-level administrative units in China from 1990 to 2017. We estimated all-cause and cause-specific mortality, years of life lost (YLLs), years lived with disability (YLDs), disability-adjusted life-years (DALYs), summary exposure values (SEVs), and attributable risk. We compared the observed results with expected values estimated based on the Socio-demographic Index (SDI). Findings Stroke and ischaemic heart disease were the leading causes of death and DALYs at the national level in China in 2017. Age-standardised DALYs per 100 000 population decreased by 33·1% (95% uncertainty interval [UI] 29·8 to 37·4) for stroke and increased by 4·6% (–3·3 to 10·7) for ischaemic heart disease from 1990 to 2017. Age-standardised stroke, ischaemic heart disease, lung cancer, chronic obstructive pulmonary disease, and liver cancer were the five leading causes of YLLs in 2017. Musculoskeletal disorders, mental health disorders, and sense organ diseases were the three leading causes of YLDs in 2017, and high systolic blood pressure, smoking, high-sodium diet, and ambient particulate matter pollution were among the leading four risk factors contributing to deaths and DALYs. All provinces had higher than expected DALYs per 100 000 population for liver cancer, with the observed to expected ratio ranging from 2·04 to 6·88. The all-cause age-standardised DALYs per 100 000 population were lower than expected in all provinces in 2017, and among the top 20 level 3 causes were lower than expected for ischaemic heart disease, Alzheimer's disease, headache disorder, and low back pain. The largest percentage change at the national level in age-standardised SEVs among the top ten leading risk factors was in high body-mass index (185%, 95% UI 113·1 to 247·7]), followed by ambient particulate matter pollution (88·5%, 66·4 to 116·4). Interpretation China has made substantial progress in reducing the burden of many diseases and disabilities. Strategies targeting chronic diseases, particularly in the elderly, should be prioritised in the expanding Chinese health-care system. Funding China National Key Research and Development Program and Bill & Melinda Gates Foundation.
Summary Background Exposure to ambient air pollution increases morbidity and mortality, and is a leading contributor to global disease burden. We explored spatial and temporal trends in mortality and burden of disease attributable to ambient air pollution from 1990 to 2015 at global, regional, and country levels. Methods We estimated global population-weighted mean concentrations of particle mass with aerodynamic diameter less than 2·5 μm (PM2·5) and ozone at an approximate 11 km × 11 km resolution with satellite-based estimates, chemical transport models, and ground-level measurements. Using integrated exposure–response functions for each cause of death, we estimated the relative risk of mortality from ischaemic heart disease, cerebrovascular disease, chronic obstructive pulmonary disease, lung cancer, and lower respiratory infections from epidemiological studies using non-linear exposure–response functions spanning the global range of exposure. Findings Ambient PM2·5 was the fifth-ranking mortality risk factor in 2015. Exposure to PM2·5 caused 4·2 million (95% uncertainty interval [UI] 3·7 million to 4·8 million) deaths and 103·1 million (90·8 million 115·1 million) disability-adjusted life-years (DALYs) in 2015, representing 7·6% of total global deaths and 4·2% of global DALYs, 59% of these in east and south Asia. Deaths attributable to ambient PM2·5 increased from 3·5 million (95% UI 3·0 million to 4·0 million) in 1990 to 4·2 million (3·7 million to 4·8 million) in 2015. Exposure to ozone caused an additional 254 000 (95% UI 97 000–422 000) deaths and a loss of 4·1 million (1·6 million to 6·8 million) DALYs from chronic obstructive pulmonary disease in 2015. Interpretation Ambient air pollution contributed substantially to the global burden of disease in 2015, which increased over the past 25 years, due to population ageing, changes in non-communicable disease rates, and increasing air pollution in low-income and middle-income countries. Modest reductions in burden will occur in the most polluted countries unless PM2·5 values are decreased substantially, but there is potential for substantial health benefits from exposure reduction. Funding Bill & Melinda Gates Foundation and Health Effects Institute.
Microplastics are particles smaller than five millimeters deriving from the degradation of plastic objects present in the environment. Microplastics can move from the environment to living organisms, including mammals. In this study, six human placentas, collected from consenting women with physiological pregnancies, were analyzed by Raman Microspectroscopy to evaluate the presence of microplastics. In total, 12 microplastic fragments (ranging from 5 to 10 μm in size), with spheric or irregular shape were found in 4 placentas (5 in the fetal side, 4 in the maternal side and 3 in the chorioamniotic membranes); all microplastics particles were characterized in terms of morphology and chemical composition. All of them were pigmented; three were identified as stained polypropylene a thermoplastic polymer, while for the other nine it was possible to identify only the pigments, which were all used for man-made coatings, paints, adhesives, plasters, finger paints, polymers and cosmetics and personal care products.
[1
]State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center
for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
[2
]College of Resources and Environment, University of Chinese Academy of Sciences, Beijing
100190, China
[3
]Institute of Environment and Health, Jianghan University, Wuhan 430056, China
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.