15
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Evidence from human oocytes for a genetic bottleneck in an mtDNA disease.

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          We have examined oocytes from a patient with Kearn-Sayre syndrome caused by mtDNA rearrangements. In mtDNA diseases, mutant and wild-type mtDNA frequently coexist in affected individuals (the condition of heteroplasmy). The proportion of mutant mtDNA transmitted from mother to offspring is variable because of a genetic bottleneck, and the "dose" of mutant mtDNA received influences the severity of the phenotype. The feasibility of prenatal diagnosis is critically dependent on the nature and timing of this bottleneck. Significant levels of rearranged mtDNA were detectable in the majority of the patient's oocytes, by use of multiplex PCR, with wide variation, in the levels of mutant and wild-type molecules, between individual oocytes. We also used length variation in a homopolymeric C tract, which is often heteroplasmic in normal controls, to identify founder subpopulations of mtDNAs in this patient's oocytes. We present direct evidence that the number of segregating units (n) is three to five orders of magnitude less than the number of mitochondria in the human female oocyte. In some cases, the best estimate of n may correspond to a single mitochondrion, if it is assumed that intergenerational transmission of mtDNA can be treated as a single sampling event. The bottleneck appears to contribute a major component of the variable transmission from mother to oocyte, in this patient and in a control. That this bottleneck had occurred by the time that oocytes were mature advances the prospects for prenatal diagnosis of mtDNA diseases.

          Related collections

          Author and article information

          Journal
          Am J Hum Genet
          American journal of human genetics
          University of Chicago Press
          0002-9297
          0002-9297
          Sep 1998
          : 63
          : 3
          Affiliations
          [1 ] Department of Paediatrics, University of Oxford, United Kingdom.
          Article
          S0002-9297(07)61378-0
          10.1086/302009
          1377397
          9718339
          462bbde3-84b3-40f2-951f-74c8a3f52e2d
          History

          Comments

          Comment on this article