4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Controllable Synthesis of Mo 3C 2 Encapsulated by N-Doped Carbon Microspheres to Achieve Highly Efficient Microwave Absorption at Full Wavebands: From Lemon-like to Fig-like Morphologies

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Mo3C2@N-doped carbon microspheres (Mo3C2@NC) have been discovered to be a family of superior microwave absorbing materials. Herein, Mo3C2@NC was synthesized through a simple high-temperature carbonization process by evaporating a graphite anode and Mo wire in Ar and N2 atmospheres with an N-doping content of 6.4 at. %. Attributing to the self-assembly mechanism, the number of Mo wires inserted into the graphite anode determined the morphologies of Mo3C2@NC, which were the unique lemon-like (1- and 2-Mo3C2@NC) and fig-like (3-, 4-, and 5-Mo3C2@NC) microstructures. 1- and 2-Mo3C2@NC exhibited powerful reflection losses (RLs) of -45.60, -45.59, and -47.11 dB at the S, C and X bands, respectively, which corresponded to thinner thicknesses. 3-, 4-, and 5-Mo3C2@NC showed outstanding absorption performance at the C, X, and Ku bands, respectively, with each value of a minimum RL less than -43.00 dB. In particular, the strongest RL (-43.56 dB) for 5-Mo3C2@NC corresponded to an ultrathin thickness of 1.3 mm. In addition, the maximum effective absorption bandwidth was 6.3 GHz for 4-Mo3C2@NC. After analysis, all Mo3C2@NC samples showed well-matched impedance due to the enhanced dielectric loss caused by the unique carbon structure and moderate magnetic loss derived from the weak magnetic property of Mo3C2. More importantly, the unique lemon-like and fig-like microstructures created sufficient interfaces and differentiated multiple reflection paths, which greatly contributed to the strong microwave absorptions at full wavebands. In full consideration of the simple preparation method and tunable absorption properties, Mo3C2@NC composites can be regarded as excellent electromagnetic wave absorption materials.

          Related collections

          Author and article information

          Contributors
          Journal
          Inorganic Chemistry
          Inorg. Chem.
          American Chemical Society (ACS)
          0020-1669
          1520-510X
          April 25 2022
          April 12 2022
          April 25 2022
          : 61
          : 16
          : 6281-6294
          Affiliations
          [1 ]School of Materials Science and Engineering, Shaanxi Key Laboratory of Nano Materials and Technology, Xi’an University of Architecture and Technology, Xi’an 710055, China
          [2 ]School of Medical Information and Engineering, Southwest Medical University, Lu Zhou 646000, China
          Article
          10.1021/acs.inorgchem.2c00533
          35412830
          46206414-82af-4bb8-b452-ae5250b6e347
          © 2022

          https://doi.org/10.15223/policy-029

          https://doi.org/10.15223/policy-037

          https://doi.org/10.15223/policy-045

          History

          Comments

          Comment on this article