1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      A study on the fragmentation of sulfuric acid and dimethylamine clusters inside an atmospheric pressure interface time-of-flight mass spectrometer

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Abstract. Sulfuric acid and dimethylamine vapours in the atmosphere can form molecular clusters, which participate in new particle formation events. In this work, we have produced, measured, and identified clusters of sulfuric acid and dimethylamine using an electrospray ionizer coupled with a planar-differential mobility analyser, connected to an atmospheric pressure interface time-of-flight mass spectrometer (ESI–DMA–APi-TOF MS). This set-up is suitable for evaluating the extent of fragmentation of the charged clusters inside the instrument. We evaluated the fragmentation of 11 negatively charged clusters both experimentally and using a statistical model based on quantum chemical data. The results allowed us to quantify the fragmentation of the studied clusters and to reconstruct the mass spectrum by removing the artifacts due to the fragmentation.

          Related collections

          Most cited references21

          • Record: found
          • Abstract: not found
          • Article: not found

          Atmospheric sulphuric acid and neutral cluster measurements using CI-APi-TOF

            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            A high-resolution mass spectrometer to measure atmospheric ion composition

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Atmospheric new particle formation from sulfuric acid and amines in a Chinese megacity

              Atmospheric new particle formation (NPF) is an important global phenomenon that is nevertheless sensitive to ambient conditions. According to both observation and theoretical arguments, NPF usually requires a relatively high sulfuric acid (H2SO4) concentration to promote the formation of new particles and a low preexisting aerosol loading to minimize the sink of new particles. We investigated NPF in Shanghai and were able to observe both precursor vapors (H2SO4) and initial clusters at a molecular level in a megacity. High NPF rates were observed to coincide with several familiar markers suggestive of H2SO4-dimethylamine (DMA)-water (H2O) nucleation, including sulfuric acid dimers and H2SO4-DMA clusters. In a cluster kinetics simulation, the observed concentration of sulfuric acid was high enough to explain the particle growth to ~3 nanometers under the very high condensation sink, whereas the subsequent higher growth rate beyond this size is believed to result from the added contribution of condensing organic species. These findings will help in understanding urban NPF and its air quality and climate effects, as well as in formulating policies to mitigate secondary particle formation in China.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                Atmospheric Measurement Techniques
                Atmos. Meas. Tech.
                Copernicus GmbH
                1867-8548
                2022
                January 03 2022
                : 15
                : 1
                : 11-19
                Article
                10.5194/amt-15-11-2022
                457cdc1d-e3fd-41da-aa94-5a9647dcc7f6
                © 2022

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article