56
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Regulation of gametogenesis and zoosporogenesis in Ulva linza (Chlorophyta): comparison with Ulva mutabilis and potential for laboratory culture

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Green Ulvophyte macroalgae represent attractive model systems for understanding growth, development, and evolution. They are untapped resources for food, fuel, and high-value compounds, but can also form nuisance blooms. To fully analyze green seaweed morphogenesis, controlled laboratory-based culture of these organisms is required. To date, only a single Ulvophyte species, Ulva mutabilis Føyn, has been manipulated to complete its whole life cycle in laboratory culture and to grow continuously under axenic conditions. Such cultures are essential to address multiple key questions in Ulva development and in algal–bacterial interactions. Here we show that another Ulva species, U. linza, with a broad geographical distribution, has the potential to be grown in axenic culture similarly to U. mutabilis. U. linza can be reliably induced to sporulate (form gametes and zoospores) in the laboratory, by cutting the relevant thallus tissue into small pieces and removing extracellular inhibitors (sporulation and swarming inhibitors). The germ cells work as an ideal feed stock for standardized algae cultures. The requirement of U. linza for bacterial signals to induce its normal morphology (particularly of the rhizoids) appears to have a species-specific component. The axenic cultures of these two species pave the way for future comparative studies of algal–microbial interactions.

          Related collections

          Most cited references33

          • Record: found
          • Abstract: found
          • Article: not found

          The Physcomitrella genome reveals evolutionary insights into the conquest of land by plants.

          We report the draft genome sequence of the model moss Physcomitrella patens and compare its features with those of flowering plants, from which it is separated by more than 400 million years, and unicellular aquatic algae. This comparison reveals genomic changes concomitant with the evolutionary movement to land, including a general increase in gene family complexity; loss of genes associated with aquatic environments (e.g., flagellar arms); acquisition of genes for tolerating terrestrial stresses (e.g., variation in temperature and water availability); and the development of the auxin and abscisic acid signaling pathways for coordinating multicellular growth and dehydration response. The Physcomitrella genome provides a resource for phylogenetic inferences about gene function and for experimental analysis of plant processes through this plant's unique facility for reverse genetics.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Green and golden seaweed tides on the rise.

            Sudden beaching of huge seaweed masses smother the coastline and form rotting piles on the shore. The number of reports of these events in previously unaffected areas has increased worldwide in recent years. These 'seaweed tides' can harm tourism-based economies, smother aquaculture operations or disrupt traditional artisanal fisheries. Coastal eutrophication is the obvious, ultimate explanation for the increase in seaweed biomass, but the proximate processes that are responsible for individual beaching events are complex and require dedicated study to develop effective mitigation strategies. Harvesting the macroalgae, a valuable raw material, before they beach could well be developed into an effective solution.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Bioenergy potential of Ulva lactuca: biomass yield, methane production and combustion.

              The biomass production potential at temperate latitudes (56°N), and the quality of the biomass for energy production (anaerobic digestion to methane and direct combustion) were investigated for the green macroalgae, Ulva lactuca. The algae were cultivated in a land based facility demonstrating a production potential of 45T (TS) ha(-1) y(-1). Biogas production from fresh and macerated U. lactuca yielded up to 271 ml CH(4) g(-1) VS, which is in the range of the methane production from cattle manure and land based energy crops, such as grass-clover. Drying of the biomass resulted in a 5-9-fold increase in weight specific methane production compared to wet biomass. Ash and alkali contents are the main challenges in the use of U. lactuca for direct combustion. Application of a bio-refinery concept could increase the economical value of the U. lactuca biomass as well as improve its suitability for production of bioenergy. Copyright © 2010 Elsevier Ltd. All rights reserved.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Plant Sci
                Front Plant Sci
                Front. Plant Sci.
                Frontiers in Plant Science
                Frontiers Media S.A.
                1664-462X
                26 January 2015
                2015
                : 6
                : 15
                Affiliations
                [1] 1School of Biosciences, University of Birmingham Birmingham, UK
                [2] 2Institute for Inorganic and Analytical Chemistry, Jena School for Microbial Communication, Friedrich Schiller University Jena Jena, Germany
                Author notes

                Edited by: Jo Ann Banks, Purdue University, USA

                Reviewed by: David Smyth, Monash University, Australia; Christian Schulz, Ruhr-University Bochum, Germany

                *Correspondence: Juliet C. Coates, School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK e-mail: j.c.coates@ 123456bham.ac.uk ; Thomas Wichard, Institute for Inorganic and Analytical Chemistry, Jena School for Microbial Communication, Friedrich Schiller University Jena, Lessingstraβe 8, 07743 Jena, Germany e-mail: thomas.wichard@ 123456uni-jena.de

                This article was submitted to Plant Evolution and Development, a section of the journal Frontiers in Plant Science.

                Article
                10.3389/fpls.2015.00015
                4306291
                25674100
                4548858c-5828-42a2-8851-1188f252bae1
                Copyright © 2015 Vesty, Kessler, Wichard and Coates.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 10 November 2014
                : 07 January 2015
                Page count
                Figures: 4, Tables: 0, Equations: 0, References: 39, Pages: 8, Words: 0
                Categories
                Plant Science
                Original Research Article

                Plant science & Botany
                green algae,gametogenesis,zoosporogenesis,morphogenesis,life cycle,algal–bacterial interactions,axenic culture,sporulation inhibitor

                Comments

                Comment on this article