10
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Optical deformations of azobenzene polymers: orientation approach vs. other concepts

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          A multitude of theoretical concepts devoted to photodeformation and alignment in azobenzene polymers are reviewed for their predictive abilities. The universality of the modern approach based on the orientation mechanism is demonstrated.

          Abstract

          It has been 30 years since the discovery of surface restructuring in thin azopolymer films by two independent research groups. A wide variety of topographical structures have been created by the application of two-/four-beam interference patterns, space light modulators and even helical beams. There are a number of comprehensive reviews which describe in detail the advances in superficial photopatterning of azopolymer films and macroscopic deformations of azonetworks. The theoretical approaches are only briefly touched on in these reviews and often are accompanied by the remark that the phenomenon is far from being understood. In this review, we would like to present the polymer theoretist's point of view on this intriguing problem. We begin by describing a multitude of theoretical approaches and commenting on the pluses and drawbacks of each. Importantly, we show that in most cases the presence of an azopolymer matrix is either ignored or limited to a specific class of azopolymers (liquid-crystalline or elastomeric). We then move to early orientation approaches based on the hypothesis that reorientation of azo-chromophores by modulated polarized light is the sole cause of superficial patterning. At the end of the review a modern orientation approach, as proposed by our own group, is presented. This approach has high predictive power because it can explain a large pool of experimental data for different classes of azopolymers including glassy and liquid-crystalline materials. This is made possible by taking into account both the light-induced orientation process and the change of anisotropic interactions between the chromophores upon their isomerization. Last but not least, this is the only approach that provides an estimate of the light-induced stress large enough to cause plastic deformations of glassy azopolymers. Recent finite element modeling results show remarkable similarity to real patterns and even time-dependent data are well explained. With this, we claim that the puzzle is finally understood and the orientation approach is ready for its implementation for major azopolymer classes.

          Related collections

          Most cited references154

          • Record: found
          • Abstract: found
          • Article: not found

          Photomechanics: directed bending of a polymer film by light.

          Polymer solutions and solids that contain light-sensitive molecules can undergo photo-contraction, whereby light energy is converted into mechanical energy. Here we show that a single film of a liquid-crystal network containing an azobenzene chromophore can be repeatedly and precisely bent along any chosen direction by using linearly polarized light. This striking photomechanical effect results from a photoselective volume contraction and may be useful in the development of high-speed actuators for microscale or nanoscale applications, for example in microrobots in medicine or optical microtweezers.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Programmable and adaptive mechanics with liquid crystal polymer networks and elastomers.

            Liquid crystals are the basis of a pervasive technology of the modern era. Yet, as the display market becomes commoditized, researchers in industry, government and academia are increasingly examining liquid crystalline materials in a variety of polymeric forms and discovering their fascinating and useful properties. In this Review, we detail the historical development of liquid crystalline polymeric materials, with emphasis on the thermally and photogenerated macroscale mechanical responses--such as bending, twisting and buckling--and on local-feature development (primarily related to topographical control). Within this framework, we elucidate the benefits of liquid crystallinity and contrast them with other stimuli-induced mechanical responses reported for other materials. We end with an outlook of existing challenges and near-term application opportunities.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Fast liquid-crystal elastomer swims into the dark.

              Liquid-crystal elastomers (LCEs) are rubbers whose constituent molecules are orientationally ordered. Their salient feature is strong coupling between the orientational order and mechanical strain. For example, changing the orientational order gives rise to internal stresses, which lead to strains and change the shape of a sample. Orientational order can be affected by changes in externally applied stimuli such as light. We demonstrate here that by dissolving-rather than covalently bonding-azo dyes into an LCE sample, its mechanical deformation in response to non-uniform illumination by visible light becomes very large (more than 60 degrees bending) and is more than two orders of magnitude faster than previously reported. Rapid light-induced deformations allow LCEs to interact with their environment in new and unexpected ways. When light from above is shone on a dye-doped LCE sample floating on water, the LCE 'swims' away from the light, with an action resembling that of flatfish such as skates or rays. We analyse the propulsion mechanism in terms of momentum transfer.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                SMOABF
                Soft Matter
                Soft Matter
                Royal Society of Chemistry (RSC)
                1744-683X
                1744-6848
                March 20 2024
                2024
                : 20
                : 12
                : 2688-2710
                Affiliations
                [1 ]Institute Theory of Polymers, Leibniz Institute of Polymer Research Dresden, 01069 Dresden, Germany
                [2 ]Institute of Macromolecular Compounds, Russian Academy of Sciences, 199004 Saint Petersburg, Russia
                Article
                10.1039/D4SM00104D
                38465418
                44d0ce43-2d34-4d01-8a66-9a757e537593
                © 2024

                http://creativecommons.org/licenses/by/3.0/

                History

                Comments

                Comment on this article

                scite_
                0
                0
                0
                0
                Smart Citations
                0
                0
                0
                0
                Citing PublicationsSupportingMentioningContrasting
                View Citations

                See how this article has been cited at scite.ai

                scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

                Similar content19

                Cited by1

                Most referenced authors983