2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Casein kinase II promotes piRNA production through direct phosphorylation of USTC component TOFU-4

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Piwi-interacting RNAs (piRNAs) are genomically encoded small RNAs that engage Piwi Argonaute proteins to direct mRNA surveillance and transposon silencing. Despite advances in understanding piRNA pathways and functions, how the production of piRNA is regulated remains elusive. Here, using a genetic screen, we identify casein kinase II (CK2) as a factor required for piRNA pathway function. We show that CK2 is required for the localization of PRG-1 and for the proper localization of several factors that comprise the ‘upstream sequence transcription complex’ (USTC), which is required for piRNA transcription. Loss of CK2 impairs piRNA levels suggesting that CK2 promotes USTC function. We identify the USTC component twenty-one-U fouled-up 4 (TOFU-4) as a direct substrate for CK2. Our findings suggest that phosphorylation of TOFU-4 by CK2 promotes the assembly of USTC and piRNA transcription. Notably, during the aging process, CK2 activity declines, resulting in the disassembly of USTC, decreased piRNA production, and defects in piRNA-mediated gene silencing, including transposons silencing. These findings highlight the significance of posttranslational modification in regulating piRNA biogenesis and its implications for the aging process. Overall, our study provides compelling evidence for the involvement of a posttranslational modification mechanism in the regulation of piRNA biogenesis.

          Abstract

          How the production of piRNA is regulated remains elusive. Here the authors showed that casein kinase II mediated direct phosphorylation of USTC component TOFU-4 promotes piRNA production.

          Related collections

          Most cited references36

          • Record: found
          • Abstract: found
          • Article: not found

          THE GENETICS OF CAENORHABDITIS ELEGANS

          Methods are described for the isolation, complementation and mapping of mutants of Caenorhabditis elegans, a small free-living nematode worm. About 300 EMS-induced mutants affecting behavior and morphology have been characterized and about one hundred genes have been defined. Mutations in 77 of these alter the movement of the animal. Estimates of the induced mutation frequency of both the visible mutants and X chromosome lethals suggests that, just as in Drosophila, the genetic units in C.elegans are large.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A germline-specific class of small RNAs binds mammalian Piwi proteins.

            Small RNAs associate with Argonaute proteins and serve as sequence-specific guides to regulate messenger RNA stability, protein synthesis, chromatin organization and genome structure. In animals, Argonaute proteins segregate into two subfamilies. The Argonaute subfamily acts in RNA interference and in microRNA-mediated gene regulation using 21-22-nucleotide RNAs as guides. The Piwi subfamily is involved in germline-specific events such as germline stem cell maintenance and meiosis. However, neither the biochemical function of Piwi proteins nor the nature of their small RNA guides is known. Here we show that MIWI, a murine Piwi protein, binds a previously uncharacterized class of approximately 29-30-nucleotide RNAs that are highly abundant in testes. We have therefore named these Piwi-interacting RNAs (piRNAs). piRNAs show distinctive localization patterns in the genome, being predominantly grouped into 20-90-kilobase clusters, wherein long stretches of small RNAs are derived from only one strand. Similar piRNAs are also found in human and rat, with major clusters occurring in syntenic locations. Although their function must still be resolved, the abundance of piRNAs in germline cells and the male sterility of Miwi mutants suggest a role in gametogenesis.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              An auxin-based degron system for the rapid depletion of proteins in nonplant cells.

              Plants have evolved a unique system in which the plant hormone auxin directly induces rapid degradation of the AUX/IAA family of transcription repressors by a specific form of the SCF E3 ubiquitin ligase. Other eukaryotes lack the auxin response but share the SCF degradation pathway, allowing us to transplant the auxin-inducible degron (AID) system into nonplant cells and use a small molecule to conditionally control protein stability. The AID system allowed rapid and reversible degradation of target proteins in response to auxin and enabled us to generate efficient conditional mutants of essential proteins in yeast as well as cell lines derived from chicken, mouse, hamster, monkey and human cells, thus offering a powerful tool to control protein expression and study protein function.
                Bookmark

                Author and article information

                Contributors
                Craig.Mello@umassmed.edu
                Journal
                Nat Commun
                Nat Commun
                Nature Communications
                Nature Publishing Group UK (London )
                2041-1723
                28 March 2024
                28 March 2024
                2024
                : 15
                : 2727
                Affiliations
                [1 ]RNA Therapeutics Institute, University of Massachusetts Chan Medical School, ( https://ror.org/0464eyp60) Worcester, MA 01605 USA
                [2 ]Howard Hughes Medical Institute, ( https://ror.org/006w34k90) Worcester, MA 01605 USA
                Author information
                http://orcid.org/0000-0002-8488-2607
                http://orcid.org/0000-0002-2084-5567
                http://orcid.org/0000-0001-9176-6551
                Article
                46882
                10.1038/s41467-024-46882-9
                10978872
                38548791
                4479849e-93ac-420c-a996-18337033365a
                © The Author(s) 2024

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 17 July 2023
                : 10 March 2024
                Funding
                Funded by: FundRef https://doi.org/10.13039/100000011, Howard Hughes Medical Institute (HHMI);
                Categories
                Article
                Custom metadata
                © Springer Nature Limited 2024

                Uncategorized
                phosphorylation
                Uncategorized
                phosphorylation

                Comments

                Comment on this article