3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      A Randomized-Controlled Trial Pilot Study Examining the Effect of Pelvic Floor Muscle Training on the Irisin Concentration in Overweight or Obese Elderly Women with Stress Urinary Incontinence

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Objective

          This study aimed to examine the effect of pelvic floor muscle training on the irisin (Ir) concentration in overweight or obese elderly women with stress urinary incontinence.

          Methods

          The number of participants included in analysis was 49: 28 women in the experimental group and 21 women in the control group. The experimental group (EG) underwent pelvic floor muscle training, whereas no therapeutic intervention was applied to the control group (CG). Irisin concentration, severity of urinary incontinence (RUIS), and body mass index (BMI) were measured in all women at the initial and final assessments.

          Results

          By comparing the initial and final assessment results we have been able to demonstrate statistically significant differences in the measured variables in the experimental group. No statistically significant differences in the measured variables were reported for the control group at the initial and final assessments. Moderate negative correlation was observed between the BMI results with the irisin concentration results in the EG at the initial assessment and no correlation at the final assessment. Weak positive correlation was observed between the BMI results with the irisin concentration in the CG at the initial and final assessment.

          Conclusion

          Further studies are necessary to observe the regulation of irisin concentration and explain mechanisms underlying these effects.

          Related collections

          Most cited references31

          • Record: found
          • Abstract: found
          • Article: not found

          Irisin is expressed and produced by human muscle and adipose tissue in association with obesity and insulin resistance.

          Recently irisin (encoded by Fndc5 gene) has been reported to stimulate browning and uncoupling protein 1 expression in sc adipose tissue of mice. The objective of the study was to investigate FNDC5 gene expression in human muscle and adipose tissue and circulating irisin according to obesity, insulin sensitivity, and type 2 diabetes. Adipose tissue FNDC5 gene expression and circulating irisin (ELISA) were analyzed in 2 different cohorts (n = 125 and n = 76); muscle FNDC5 expression was also evaluated in a subcohort of 34 subjects. In vitro studies in human preadipocytes and adipocytes and in induced browning of 3T3-L1 cells (by means of retinoblastoma 1 silencing) were also performed. In both sc and visceral adipose tissue, FNDC5 gene expression decreased significantly in association with obesity and was positively associated with brown adipose tissue markers, lipogenic, insulin pathway-related, mitochondrial, and alternative macrophage gene markers and negatively associated with LEP, TNFα, and FSP27 (a known repressor of brown genes). Circulating irisin and irisin levels in adipose tissue were significantly associated with FNDC5 gene expression in adipose tissue. In muscle, the FNDC5 gene was 200-fold more expressed than in adipose tissue, and its expression was associated with body mass index, PGC1α, and other mitochondrial genes. In obese participants, FNDC5 gene expression in muscle was significantly decreased in association with type 2 diabetes. Interestingly, muscle FNDC5 gene expression was significantly associated with FNDC5 and UCP1 gene expression in visceral adipose tissue. In men, circulating irisin levels were negatively associated with obesity and insulin resistance. Irisin was secreted from human adipocytes into the media, and the induction of browning in 3T3-L1 cells led to increased secreted irisin levels. Decreased circulating irisin concentration and FNDC5 gene expression in adipose tissue and muscle from obese and type 2 diabetic subjects suggests a loss of brown-like characteristics and a potential target for therapy.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            FNDC5/Irisin Is Not Only a Myokine but Also an Adipokine

            Exercise provides clear beneficial effects for the prevention of numerous diseases. However, many of the molecular events responsible for the curative and protective role of exercise remain elusive. The recent discovery of FNDC5/irisin protein that is liberated by muscle tissue in response to exercise might be an important finding with regard to this unsolved mechanism. The most striking aspect of this myokine is its alleged capacity to drive brown-fat development of white fat and thermogenesis. However, the nature and secretion form of this new protein is controversial. The present study reveals that rat skeletal muscle secretes a 25 kDa form of FNDC5, while the 12 kDa/irisin theoretical peptide was not detected. More importantly, this study is the first to reveal that white adipose tissue (WAT) also secretes FNDC5; hence, it may also behave as an adipokine. Our data using rat adipose tissue explants secretomes proves that visceral adipose tissue (VAT), and especially subcutaneous adipose tissue (SAT), express and secrete FNDC5. We also show that short-term periods of endurance exercise training induced FNDC5 secretion by SAT and VAT. Moreover, we observed that WAT significantly reduced FNDC5 secretion in fasting animals. Interestingly, WAT of obese animals over-secreted this hormone, which might suggest a type of resistance. Because 72% of circulating FNDC5/irisin was previously attributed to muscle secretion, our findings suggest a muscle-adipose tissue crosstalk through a regulatory feedback mechanism.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Detection and Quantitation of Circulating Human Irisin by Tandem Mass Spectrometry.

              Exercise provides many health benefits, including improved metabolism, cardiovascular health, and cognition. We have shown previously that FNDC5, a type I transmembrane protein, and its circulating form, irisin, convey some of these benefits in mice. However, recent reports questioned the existence of circulating human irisin both because human FNDC5 has a non-canonical ATA translation start and because of claims that many human irisin antibodies used in commercial ELISA kits lack required specificity. In this paper we have identified and quantitated human irisin in plasma using mass spectrometry with control peptides enriched with heavy stable isotopes as internal standards. This precise state-of-the-art method shows that human irisin is mainly translated from its non-canonical start codon and circulates at ∼ 3.6 ng/ml in sedentary individuals; this level is increased to ∼ 4.3 ng/ml in individuals undergoing aerobic interval training. These data unequivocally demonstrate that human irisin exists, circulates, and is regulated by exercise.
                Bookmark

                Author and article information

                Contributors
                Journal
                Biomed Res Int
                Biomed Res Int
                BMRI
                BioMed Research International
                Hindawi
                2314-6133
                2314-6141
                2019
                19 August 2019
                : 2019
                : 7356187
                Affiliations
                1Department of Physiotherapy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Poland
                2Department of Food Chemistry, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Poland
                Author notes

                Academic Editor: Luenda Charles

                Author information
                https://orcid.org/0000-0001-5301-7592
                https://orcid.org/0000-0002-6988-3038
                Article
                10.1155/2019/7356187
                6720047
                31531365
                442b7156-652f-44dc-ac86-a597607e0dd6
                Copyright © 2019 Magdalena Weber-Rajek et al.

                This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 29 May 2019
                : 24 July 2019
                Categories
                Research Article

                Comments

                Comment on this article