110
views
0
recommends
+1 Recommend
0 collections
    8
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Comparison of the CDC Backpack aspirator and the Prokopack aspirator for sampling indoor- and outdoor-resting mosquitoes in southern Tanzania

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Resting mosquitoes can easily be collected using an aspirating device. The most commonly used mechanical aspirator is the CDC Backpack aspirator. Recently, a simple, and low-cost aspirator called the Prokopack has been devised and proved to have comparable performance. The following study evaluates the Prokopack aspirator compared to the CDC backpack aspirator when sampling resting mosquitoes in rural Tanzania.

          Methods

          Mosquitoes were sampled in- and outdoors of 48 typical rural African households using both aspirators. The aspirators were rotated between collectors and households in a randomized, Latin Square design. Outdoor collections were performed using artificial resting places (large barrel and car tyre), underneath the outdoor kitchen ( kibanda) roof and from a drop-net. Data were analysed with generalized linear models.

          Results

          The number of mosquitoes collected using the CDC Backpack and the Prokopack aspirator were not significantly different both in- and outdoors (indoors p = 0.735; large barrel p = 0.867; car tyre p = 0.418; kibanda p = 0.519). The Prokopack was superior for sampling of drop-nets due to its smaller size. The number mosquitoes collected per technician was more consistent when using the Prokopack aspirator. The Prokopack was more user-friendly: technicians preferred using the it over the CDC backpack aspirator as it weighs considerably less, retains its charge for longer and is easier to manoeuvre.

          Conclusions

          The Prokopack proved in the field to be more advantageous than the CDC Backpack aspirator. It can be self assembled using simple, low-cost and easily attainable materials. This device is a useful tool for researchers or vector-control surveillance programs operating in rural Africa, as it is far simpler and quicker than traditional means of sampling resting mosquitoes. Further longitudinal evaluations of the Prokopack aspirator versus the gold standard pyrethrum spray catch for indoor resting catches are recommended.

          Related collections

          Most cited references19

          • Record: found
          • Abstract: found
          • Article: not found

          Identification of single specimens of the Anopheles gambiae complex by the polymerase chain reaction.

          A ribosomal DNA-polymerase chain reaction (PCR) method has been developed for species identification of individuals of the five most widespread members of the Anopheles gambiae complex, a group of morphologically indistinguishable sibling mosquito species that includes the major vectors of malaria in Africa. The method, which is based on species-specific nucleotide sequences in the ribosomal DNA intergenic spacers, may be used to identify both species and interspecies hybrids, regardless of life stage, using either extracted DNA or fragments of a specimen. Intact portions of a mosquito as small as an egg or the segment of one leg may be placed directly into the PCR mixture for amplification and analysis. The method uses a cocktail of five 20-base oligonucleotides to identify An. gambiae, An. arabiensis, An. quadriannnulatus, and either An. melas in western Africa or An. melas in eastern and southern Africa.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A new, cost-effective, battery-powered aspirator for adult mosquito collections.

            We report the development of a new mosquito aspirator with the same aspiration capacity (airflow) of the CDC Backpack Aspirator (CDC-BP), but smaller and lighter (0.8 kg without battery), less expensive (US$45-70), easier to build, and compatible with the use of telescoping extension poles to access hard-to-reach locations. The performance of this new aspirator, named "Prokopack," was compared with the CDC-BP in laboratory settings as well as in paired collections in combined sewer overflow (CSO) tunnels in Atlanta, GA, and indoor mosquito collections in Iquitos, Peru. The difference in suction power between both aspirators (average, 0.29-0.43 m/s) was negligible. However, 2.3 times more mosquitoes were collected using the Prokopack in the upper wall (>1.5 m) and ceilings of CSO tunnels than with the CDC-BP in lower walls. Indoor collection in Iquitos yielded significantly more total mosquito numbers [including Culex pipiens complex, Culex (melanoconion) sp., and Mansonia sp.] and Aedes aegypti (L.) in the Prokopack than in the CDC-BP. Our results demonstrate the effectiveness of the Prokopack to collect different mosquito species in different epidemiological settings.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Interdependence of domestic malaria prevention measures and mosquito-human interactions in urban Dar es Salaam, Tanzania

              Background Successful malaria vector control depends on understanding behavioural interactions between mosquitoes and humans, which are highly setting-specific and may have characteristic features in urban environments. Here mosquito biting patterns in Dar es Salaam, Tanzania are examined and the protection against exposure to malaria transmission that is afforded to residents by using an insecticide-treated net (ITN) is estimated. Methods Mosquito biting activity over the course of the night was estimated by human landing catch in 216 houses and 1,064 residents were interviewed to determine usage of protection measures and the proportion of each hour of the night spent sleeping indoors, awake indoors, and outdoors. Results Hourly variations in biting activity by members of the Anopheles gambiae complex were consistent with classical reports but the proportion of these vectors caught outdoors in Dar es Salaam was almost double that of rural Tanzania. Overall, ITNs confer less protection against exophagic vectors in Dar es Salaam than in rural southern Tanzania (59% versus 70%). More alarmingly, a biting activity maximum that precedes 10 pm and much lower levels of ITN protection against exposure (38%) were observed for Anopheles arabiensis, a vector of modest importance locally, but which predominates transmission in large parts of Africa. Conclusion In a situation of changing mosquito and human behaviour, ITNs may confer lower, but still useful, levels of personal protection which can be complemented by communal transmission suppression at high coverage. Mosquito-proofing houses appeared to be the intervention of choice amongst residents and further options for preventing outdoor transmission include larviciding and environmental management.
                Bookmark

                Author and article information

                Journal
                Parasit Vectors
                Parasites & Vectors
                BioMed Central
                1756-3305
                2011
                30 June 2011
                : 4
                : 124
                Affiliations
                [1 ]Disease Control Department, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK
                [2 ]Biomedical and Environmental Thematic Group, Ifakara Health Institute, Ifakara, Morogoro, Tanzania
                Article
                1756-3305-4-124
                10.1186/1756-3305-4-124
                3141745
                21718464
                426a22ca-1040-4f1d-bd7d-0304841aa7d6
                Copyright ©2011 Maia et al; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 3 February 2011
                : 30 June 2011
                Categories
                Research

                Parasitology
                Parasitology

                Comments

                Comment on this article