115
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      House Dust Mite Allergen Regulates Constitutive Apoptosis of Normal and Asthmatic Neutrophils via Toll-Like Receptor 4

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          House dust mites (HDMs) induce allergic diseases such as asthma. Neutrophil apoptosis is an important process of innate immunity, and its dysregulation is associated with asthma. In this study, we examined the effects of HDM on constitutive apoptosis of normal and asthmatic neutrophils. Extract of Dermatophagoides pteronissinus (DP) inhibited neutrophil apoptosis, but Dermatophagoides farinae extract had no effect. Anti-apoptotic signaling mediated by DP involves in TLR4, Lyn, PI3K, Akt, ERK, and NF-κB in normal neutrophils. DP delayed cleavage of procaspase 9 and procaspase 3 and the decrease in Mcl-1 expression. Supernatant collected from DP-treated normal neutrophils inhibited the constitutive apoptosis of normal neutrophils, and S100A8 and S100A9 were identified as anti-apoptotic proteins in the supernatant. S100A8 and S100A9 transduced the anti-apoptotic signal via TLR4, Lyn, PI3K, Akt, ERK, and NF-κB. DP also suppressed asthmatic neutrophil apoptosis and induced secretion of S100A8 and S100A9, which delayed the constitutive apoptosis. The anti-apoptotic effects of DP, S100A8 and S100A9 in asthmatic neutrophils are associated with TLR4, Lyn, PI3K, Akt, ERK, and NF-κB. The concentrations of S100A8 and S100A9 were significantly elevated in asthmatic bronchoalveolar lavage fluid (BALF) when compared to normal BALF ( p<0.01), but not in serum. S100A8 concentration in BALF was positively correlated with the number of BALF neutrophils and negatively correlated with FEV1(%). These findings improve our understanding of the role of HDM in regulation of neutrophil apoptosis in normal individuals and asthmatics and will enable elucidation of asthma pathogenesis.

          Related collections

          Most cited references29

          • Record: found
          • Abstract: found
          • Article: not found

          House dust mite allergen induces asthma via Toll-like receptor 4 triggering of airway structural cells.

          Barrier epithelial cells and airway dendritic cells (DCs) make up the first line of defense against inhaled substances such as house dust mite (HDM) allergen and endotoxin (lipopolysaccharide, LPS). We hypothesized that these cells need to communicate with each other to cause allergic disease. We show in irradiated chimeric mice that Toll-like receptor 4 (TLR4) expression on radioresistant lung structural cells, but not on DCs, is necessary and sufficient for DC activation in the lung and for priming of effector T helper responses to HDM. TLR4 triggering on structural cells caused production of the innate proallergic cytokines thymic stromal lymphopoietin, granulocyte-macrophage colony-stimulating factor, interleukin-25 and interleukin-33. The absence of TLR4 on structural cells, but not on hematopoietic cells, abolished HDM-driven allergic airway inflammation. Finally, inhalation of a TLR4 antagonist to target exposed epithelial cells suppressed the salient features of asthma, including bronchial hyperreactivity. Our data identify an innate immune function of airway epithelial cells that drives allergic inflammation via activation of mucosal DCs.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A large subgroup of mild-to-moderate asthma is persistently noneosinophilic.

            Airway eosinophilia is typical of asthma, and many controller treatments target eosinophilic disease. Asthma is clinically heterogeneous, however, and a subgroup of people with asthma do not have airway eosinophilia. The size of this subgroup is uncertain because prior studies have not examined repeated measures of sputum cytology to determine when people with asthma have intermittent versus persistent sputum eosinophila and when they are persistently noneosinophilic. To determine the prevalence and clinical characteristics of the noneosinophilic asthma phenotype. We analyzed sputum cytology data from 995 subjects with asthma enrolled in clinical trials in the Asthma Clinical Research Network where they had undergone sputum induction and measures of sputum cytology, often repeatedly, and assessment of responses to standardized asthma treatments. In cross-sectional analyses, sputum eosinophilia (≥2% eosinophils) was found in only 36% of subjects with asthma not taking an inhaled corticosteroid (ICS) and 17% of ICS-treated subjects with asthma; an absence of eosinophilia was noted frequently, even in subjects with asthma whose disease was suboptimally controlled. In repeated measures analyses of people with asthma not taking an ICS, 22% of subjects had sputum eosinophilia on every occasion (persistent eosinophilia); 31% had eosinophilia on at least one occasion (intermittent eosinophilia); and 47% had no eosinophilia on every occasion (persistently noneosinophilic). Two weeks of combined antiinflammatory therapy caused significant improvements in airflow obstruction in eosinophilic asthma, but not in persistently noneosinophilic asthma. In contrast, bronchodilator responses to albuterol were similar in eosinophilic and noneosinophilic asthma. Approximately half of patients with mild-to-moderate asthma have persistently noneosinophilic disease, a disease phenotype that responds poorly to currently available antiinflammatory therapy.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Inflammation-associated S100 proteins: new mechanisms that regulate function.

              This review focuses on new aspects of extracellular roles of the calgranulins. S100A8, S100A9 and S100A12 are constitutively expressed in neutrophils and induced in several cell types. The S100A8 and S100A9 genes are regulated by pro- and anti-inflammatory mediators and their functions may depend on cell type, mediators within a particular inflammatory milieu, receptors involved in their recognition and their post-translational modification. The S100A8 gene induction in macrophages is dependent on IL-10 and potentiated by immunosuppressive agents. S100A8 and S100A9 are oxidized by peroxide, hypochlorite and nitric oxide (NO). HOCl generates intra-chain sulfinamide bonds; stronger oxidation promotes cross-linked forms that are seen in human atheroma. S100A8 is >200-fold more sensitive to oxidative cross-linking than low-density lipoprotein and may reduce oxidative damage. S100A8 and S100A9 can be S-nitrosylated. S100A8-SNO suppresses mast cell activation and inflammation in the microcirculation and may act as an NO transporter to regulate vessel tone in inflammatory lesions. S100A12 activates mast cells and is a monocyte and mast cell chemoattractant; a G-protein-coupled mechanism may be involved. Structure-function studies are discussed in relation to conservation and divergence of functions in S100A8. S100A12 induces cytokines in mast cells, but not monocytes/macrophages. It forms complexes with Zn(2+) and, by chelating Zn(2+), S100A12 significantly inhibits MMPs. Zn(2+) in S100A12 complexes co-localize with MMP-9 in foam cells in atheroma. In summary, S100A12 has pro-inflammatory properties that are likely to be stable in an oxidative environment, because it lacks Cys and Met residues. Conversely, S100A8 and S100A9 oxidation and S-nitrosylation may have important protective mechanisms in inflammation.
                Bookmark

                Author and article information

                Contributors
                Role: Academic Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, CA USA )
                1932-6203
                14 May 2015
                2015
                : 10
                : 5
                : e0125983
                Affiliations
                [1 ]Department of Biomedical Laboratory Science, School of Medicine, Eulji University, Daejeon 301–768, Republic of Korea
                [2 ]Department of Respiratory Internal Medicine, College of Medicine, Konyang University, Daejeon, 302–718, Republic of Korea
                [3 ]Department of Clinical Laboratory Science, Wonkwang Health Science University, Iksan, 570–750, Republic of Korea
                [4 ]Department of Senior Healthcare, BK21 plus program, Graduate School, Eulji University, Daejeon 301–746, Republic of Korea
                National Institute of Environmental Health Sciences, UNITED STATES
                Author notes

                Competing Interests: The authors have declared that no competing interests exist.

                Conceived and designed the experiments: ISK. Performed the experiments: Do Hyung Kim EC NRL. Analyzed the data: JSL SYB AG Da Hye Kim. Wrote the paper: ISK.

                Article
                PONE-D-14-51396
                10.1371/journal.pone.0125983
                4431853
                25973752
                424ca84b-d565-4910-a076-a5897f23ce75
                Copyright @ 2015

                This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

                History
                : 15 November 2014
                : 27 March 2015
                Page count
                Figures: 7, Tables: 1, Pages: 19
                Funding
                This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education.
                Categories
                Research Article
                Custom metadata
                All relevant data are within the paper and its Supporting Information files.

                Uncategorized
                Uncategorized

                Comments

                Comment on this article

                scite_
                47
                2
                32
                0
                Smart Citations
                47
                2
                32
                0
                Citing PublicationsSupportingMentioningContrasting
                View Citations

                See how this article has been cited at scite.ai

                scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

                Similar content137

                Cited by16

                Most referenced authors294