5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Vestibulo-ocular dysfunction in mTBI: Utility of the VOMS for evaluation and management – A review

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          BACKGROUND: Individuals who have suffered a concussion/mild traumatic brain injury (mTBI) frequently report symptoms associated with vestibular and/or oculomotor dysfunction (VOD) like dizziness, nausea, fatigue, brain fog, headache, gait and neurocognitive impairments which are associated with the development of chronic symptoms. The Vestibular/Ocular Motor Screening (VOMS) tool has been established as a reliable and clinically relevant complement to use alongside a battery of post-concussion tests to improve screening and referral for further evaluation and treatment of VOD. OBJECTIVES: This paper will review the pathoanatomy and symptomatology of common vestibular and oculomotor disorders after concussion, as well as the utility of the VOMS to assist in diagnosis, referral, and management. METHODS: Primary articles were identified using a search via PubMed, Google Scholar, OneSearch, and CINAHL. Search key terms were combinations of “mild traumatic brain injury” or “concussion” or “pursuit” or “accommodation” or “vergence” or “convergence insufficiency” or “saccades” or “vestibulo-ocular reflex” or “vestibular ocular motor screen” or “vestibular rehabilitation”, or “vision rehabilitation” including adult and pediatric populations that were published in print or electronically from 1989 to 2021 in English. Classic papers on anatomy of eye movements, vestibular system and pathological changes in mTBI were also included, regardless of publication date. RESULTS: Objective impairments are commonly found during testing of smooth pursuit, saccades, vergence, accommodation, vestibular ocular reflex, and visual motion sensitivity after mTBI. These deficits can be actively treated with vestibular physical therapy and oculomotor/neuro-optometric vision therapy. VOMS is an efficient and reliable tool that can be used by all healthcare and rehabilitation providers to aid in diagnosis of post-concussion VOD, to help facilitate the decision to refer for further evaluation and treatment to expedite symptomatic post-concussion recovery. CONCLUSIONS: VOD is common after concussion in acute, post-acute, and chronic phases. Once areas of impairments are identified through proper assessment, clinicians can maximize recovery by referring to vestibular physical therapy and/or neuro-optometry to design a targeted treatment program to address individual deficits.

          Related collections

          Most cited references137

          • Record: found
          • Abstract: found
          • Article: not found

          A clinical sign of canal paresis.

          Unilateral loss of horizontal semicircular canal function, termed canal paresis, is an important finding in dizzy patients. To our knowledge, apart from head-shaking nystagmus, no clinical sign of canal paresis has yet been described and the term derives from the characteristic finding on caloric tests: little or no nystagmus evoked by either hot or cold irrigation of the affected ear. We describe a simple and reliable clinical sign of total unilateral loss of horizontal semicircular canal function: one large or several small oppositely directed, compensatory, refixation saccades elicited by rapid horizontal head rotation toward the lesioned side. Using magnetic search coils to measure head and eye movement, we have validated this sign in 12 patients who had undergone unilateral vestibular neurectomy.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Predictors of clinical recovery from concussion: a systematic review

            Objective A systematic review of factors that might be associated with, or influence, clinical recovery from sport-related concussion. Clinical recovery was defined functionally as a return to normal activities, including school and sports, following injury. Design Systematic review. Data sources PubMed, PsycINFO, MEDLINE, CINAHL, Cochrane Library, EMBASE, SPORTDiscus, Scopus and Web of Science. Eligibility criteria for selecting studies Studies published by June of 2016 that addressed clinical recovery from concussion. Results A total of 7617 articles were identified using the search strategy, and 101 articles were included. There are major methodological differences across the studies. Many different clinical outcomes were measured, such as symptoms, cognition, balance, return to school and return to sports, although symptom outcomes were the most frequently measured. The most consistent predictor of slower recovery from concussion is the severity of a person’s acute and subacute symptoms. The development of subacute problems with headaches or depression is likely a risk factor for persistent symptoms lasting greater than a month. Those with a preinjury history of mental health problems appear to be at greater risk for having persistent symptoms. Those with attention deficit hyperactivity disorder (ADHD) or learning disabilities do not appear to be at substantially greater risk. There is some evidence that the teenage years, particularly high school, might be the most vulnerable time period for having persistent symptoms—with greater risk for girls than boys. Conclusion The literature on clinical recovery from sport-related concussion has grown dramatically, is mostly mixed, but some factors have emerged as being related to outcome.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Outcome from mild traumatic brain injury.

              G Iverson (2005)
              The focus of this review is outcome from mild traumatic brain injury. Recent literature relating to pathophysiology, neuropsychological outcome, and the persistent postconcussion syndrome will be integrated into the existing literature. The MTBI literature is enormous, complex, methodologically flawed, and controversial. There have been dozens of studies relating to pathophysiology, neuropsychological outcome, and the postconcussion syndrome during the past year. Two major reviews have been published. Some of the most interesting prospective research has been done with athletes. The cognitive and neurobehavioral sequelae are self-limiting and reasonably predictable. Mild traumatic brain injuries are characterized by immediate physiological changes conceptualized as a multilayered neurometabolic cascade in which affected cells typically recover, although under certain circumstances a small number might degenerate and die. The primary pathophysiologies include ionic shifts, abnormal energy metabolism, diminished cerebral blood flow, and impaired neurotransmission. During the first week after injury the brain undergoes a dynamic restorative process. Athletes typically return to pre-injury functioning (assessed using symptom ratings or brief neuropsychological measures) within 2-14 days. Trauma patients usually take longer to return to their pre-injury functioning. In these patients recovery can be incomplete and can be complicated by preexisting psychiatric or substance abuse problems, poor general health, concurrent orthopedic injuries, or comorbid problems (e.g. chronic pain, depression, substance abuse, life stress, unemployment, and protracted litigation).
                Bookmark

                Author and article information

                Journal
                NeuroRehabilitation
                NRE
                IOS Press
                10538135
                18786448
                May 10 2022
                May 10 2022
                : 50
                : 3
                : 279-296
                Affiliations
                [1 ]Kaiser Permanente Medical Center, Vallejo, CA, USA
                [2 ]Kaiser Permanente Medical Center, Oakland, CA, USA
                [3 ]Herbert Wertheim School of Optometry & Vision Science at the University of California, Berkeley, CA, USA
                [4 ]Virginia Neuro-Optometry at Concussion Care Centre of Virginia, Richmond VA, USA
                Article
                10.3233/NRE-228012
                422f4a57-331b-4b01-a856-c92b52a2405a
                © 2022
                History

                Comments

                Comment on this article