69
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Human Leptospirosis Caused by a New, Antigenically Unique Leptospira Associated with a Rattus Species Reservoir in the Peruvian Amazon

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          As part of a prospective study of leptospirosis and biodiversity of Leptospira in the Peruvian Amazon, a new Leptospira species was isolated from humans with acute febrile illness. Field trapping identified this leptospire in peridomestic rats ( Rattus norvegicus, six isolates; R. rattus, two isolates) obtained in urban, peri-urban, and rural areas of the Iquitos region. Novelty of this species was proven by serological typing, 16S ribosomal RNA gene sequencing, pulsed-field gel electrophoresis, and DNA-DNA hybridization analysis. We have named this species “ Leptospira licerasiae” serovar Varillal, and have determined that it is phylogenetically related to, but genetically distinct from, other intermediate Leptospira such as L. fainei and L. inadai. The type strain is serovar Varillal strain VAR 010 T, which has been deposited into internationally accessible culture collections. By microscopic agglutination test, “ Leptospira licerasiae” serovar Varillal was antigenically distinct from all known serogroups of Leptospira except for low level cross-reaction with rabbit anti– L. fainei serovar Hurstbridge at a titer of 1∶100. LipL32, although not detectable by PCR, was detectable in “ Leptospira licerasiae” serovar Varillal by both Southern blot hybridization and Western immunoblot, although on immunoblot, the predicted protein was significantly smaller (27 kDa) than that of L. interrogans and L. kirschneri (32 kDa). Isolation was rare from humans (2/45 Leptospira isolates from 881 febrile patients sampled), but high titers of MAT antibodies against “ Leptospira licerasiae” serovar Varillal were common (30%) among patients fulfilling serological criteria for acute leptospirosis in the Iquitos region, and uncommon (7%) elsewhere in Peru. This new leptospiral species reflects Amazonian biodiversity and has evolved to become an important cause of leptospirosis in the Peruvian Amazon.

          Author Summary

          Leptospirosis has emerged as a globally important infectious disease. Its impact on public health is often difficult to determine, sometimes because of low clinical suspicion, or, as is more common, difficulty in laboratory diagnosis. Gold-standard serology-based diagnosis has a number of important limitations, including the need to use live leptospires that have a sufficient diversity of antigens to be able to detect specific anti-leptospiral antibodies; such antigens vary greatly from region to region. In this paper, we report the discovery of a new species of Leptospira in the highly biodiverse region of the Peruvian Amazon, and demonstrate that the animal source of infection for humans is the domestic rat. Detailed biological characterization of this new species shows that it is antigenically unique and represents a new serogroup and serovar, proposed as Leptospira licerasiae serogroup Iquitos serovar Varillal. Incorporation of this new isolate into serological testing of patients presenting with acute febrile illness in Iquitos, Peru, showed a far higher incidence of leptospirosis than previously suspected, showing the important of using region-specific Leptospira in diagnosis. The field-to-laboratory approach presented here has general application to the discovery of other emerging pathogens and their impact on human health.

          Related collections

          Most cited references36

          • Record: found
          • Abstract: found
          • Article: not found

          16S ribosomal DNA amplification for phylogenetic study.

          A set of oligonucleotide primers capable of initiating enzymatic amplification (polymerase chain reaction) on a phylogenetically and taxonomically wide range of bacteria is described along with methods for their use and examples. One pair of primers is capable of amplifying nearly full-length 16S ribosomal DNA (rDNA) from many bacterial genera; the additional primers are useful for various exceptional sequences. Methods for purification of amplified material, direct sequencing, cloning, sequencing, and transcription are outlined. An obligate intracellular parasite of bovine erythrocytes, Anaplasma marginale, is used as an example; its 16S rDNA was amplified, cloned, sequenced, and phylogenetically placed. Anaplasmas are related to the genera Rickettsia and Ehrlichia. In addition, 16S rDNAs from several species were readily amplified from material found in lyophilized ampoules from the American Type Culture Collection. By use of this method, the phylogenetic study of extremely fastidious or highly pathogenic bacterial species can be carried out without the need to culture them. In theory, any gene segment for which polymerase chain reaction primer design is possible can be derived from a readily obtainable lyophilized bacterial culture.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The general stochastic model of nucleotide substitution.

            DNA sequence evolution through nucleotide substitution may be assimilated to a stationary Markov process. The fundamental equations of the general model, with 12 independent substitution parameters, are used to obtain a formula which corrects the effect of multiple and parallel substitutions on the measure of evolutionary divergence between two homologous sequences. We show that only reversible models, with six independent parameters, allow the calculation of the substitution rates. Simulation experiments on DNA sequence evolution through nucleotide substitution call into question the effectiveness of the general model (and of any other more detailed description); nevertheless, the general model results are slightly superior to any of its particular cases.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Standardization of pulsed-field gel electrophoresis protocols for the subtyping of Escherichia coli O157:H7, Salmonella, and Shigella for PulseNet.

              Standardized rapid pulsed-field gel electrophoresis (PFGE) protocols for the subtyping of Escherichia coli O157:H7, Salmonella serotypes, and Shigella species are described. These protocols are used by laboratories in PulseNet, a network of state and local health departments, and other public health laboratories that perform real-time PFGE subtyping of these bacterial foodborne pathogens for surveillance and outbreak investigations. Development and standardization of these protocols consisted of a thorough optimization of reagents and reaction conditions to ensure that the protocols yielded consistent results and high-quality PFGE pattern data in all the PulseNet participating laboratories. These rapid PFGE protocols are based on the original 3-4-day standardized procedure developed at Centers for Disease Control and Prevention that was validated in 1996 and 1997 by eight independent laboratories. By using these rapid standardized PFGE protocols, PulseNet laboratories are able to subtype foodborne pathogens in approximately 24 h, allowing for the early detection of foodborne disease case clusters and often aiding in the identification of the source responsible for the infections.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Negl Trop Dis
                plos
                plosntds
                PLoS Neglected Tropical Diseases
                Public Library of Science (San Francisco, USA )
                1935-2727
                1935-2735
                April 2008
                2 April 2008
                : 2
                : 4
                : e213
                Affiliations
                [1 ]Division of Infectious Diseases, Department of Medicine, University of California San Diego School of Medicine, La Jolla, California, United States of America
                [2 ]Alexander von Humboldt Institute of Tropical Medicine, Universidad Peruana Cayetano Heredia, Lima, Peru
                [3 ]Leptospirosis Reference Laboratory, National Institute of Health, Lima, Peru
                [4 ]CONICET (Consejo de Investigaciones Científicas y Técnicas) and PIDBA (Programa de Investigaciones de Biodiversidad Argentina), Universidad Nacional de Tucumán, Tucumán, Argentina
                [5 ]Leptospirosis Laboratory, Meningitis and Special Pathogens Branch, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
                [6 ]Asociacion Benefica PRISMA, Lima, Peru
                [7 ]Directorate of Public Health, Ministry of Health, Loreto Department, Iquitos, Peru
                [8 ]Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
                [9 ]Saskatchewan Disease Control Laboratory, Regina, Saskatchewan, Canada
                Institut Pasteur, France
                Author notes

                Conceived and designed the experiments: MM JR MC MD RLG KP CV EG RHG JV. Performed the experiments: MM JR MC MD RLG AS KP RG. Analyzed the data: MM JR MC MD RLG MS AS KP CV EG RHG PL JV. Contributed reagents/materials/analysis tools: MM JR MC MD RLG AS KP JV. Wrote the paper: MM JR MD RLG MS KP EG RHG PL JV.

                Article
                07-PNTD-RA-0085R4
                10.1371/journal.pntd.0000213
                2271056
                18382606
                4171e1a2-3fd3-44e2-9afe-44abc220c072
                This is an open-access article distributed under the terms of the Creative Commons Public Domain declaration which stipulates that, once placed in the public domain, this work may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose.
                History
                : 30 April 2007
                : 12 February 2008
                Page count
                Pages: 12
                Categories
                Research Article
                Infectious Diseases/Bacterial Infections
                Infectious Diseases/Epidemiology and Control of Infectious Diseases
                Infectious Diseases/Neglected Tropical Diseases
                Infectious Diseases/Tropical and Travel-Associated Diseases
                Microbiology/Environmental Microbiology
                Microbiology/Immunity to Infections
                Microbiology/Medical Microbiology
                Microbiology/Microbial Evolution and Genomics

                Infectious disease & Microbiology
                Infectious disease & Microbiology

                Comments

                Comment on this article