2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Animal model of methylphenidate's long-term memory-enhancing effects

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Methylphenidate (MPH), introduced more than 60 years ago, accounts for two-thirds of current prescriptions for attention deficit hyperactivity disorder (ADHD). Although many studies have modeled MPH's effect on executive function, almost none have directly modeled its effect on long-term memory (LTM), even though improvement in LTM is a critical target of therapeutic intervention in ADHD. We examined the effects of a wide range of doses of MPH (0.01–10 mg/kg, i.p.) on Pavlovian fear learning, a leading model of memory. MPH's effects were then compared to those of atomoxetine (0.1–10 mg/kg, i.p.), bupropion (0.5–20 mg/kg, i.p.), and citalopram (0.01–10 mg/kg, i.p.). At low, clinically relevant doses, MPH enhanced fear memory; at high doses it impaired memory. MPH's memory-enhancing effects were not confounded by its effects on locomotion or anxiety. Further, MPH-induced memory enhancement seemed to require both dopamine and norepinephrine transporter inhibition. Finally, the addictive potential of MPH (1 mg/kg and 10 mg/kg) was compared to those of two other psychostimulants, amphetamine (0.005 mg/kg and 1.5 mg/kg) and cocaine (0.15 mg/kg and 15 mg/kg), using a conditioned place preference and behavioral sensitization paradigm. We found that memory-enhancing effects of psychostimulants observed at low doses are readily dissociable from their reinforcing and locomotor activating effects at high doses. Together, our data suggest that fear conditioning will be an especially fruitful platform for modeling the effects of psychostimulants on LTM in drug development.

          Related collections

          Most cited references60

          • Record: found
          • Abstract: found
          • Article: not found

          The neural basis of drug craving: an incentive-sensitization theory of addiction.

          This paper presents a biopsychological theory of drug addiction, the 'Incentive-Sensitization Theory'. The theory addresses three fundamental questions. The first is: why do addicts crave drugs? That is, what is the psychological and neurobiological basis of drug craving? The second is: why does drug craving persist even after long periods of abstinence? The third is whether 'wanting' drugs (drug craving) is attributable to 'liking' drugs (to the subjective pleasurable effects of drugs)? The theory posits the following. (1) Addictive drugs share the ability to enhance mesotelencephalic dopamine neurotransmission. (2) One psychological function of this neural system is to attribute 'incentive salience' to the perception and mental representation of events associated with activation of the system. Incentive salience is a psychological process that transforms the perception of stimuli, imbuing them with salience, making them attractive, 'wanted', incentive stimuli. (3) In some individuals the repeated use of addictive drugs produces incremental neuroadaptations in this neural system, rendering it increasingly and perhaps permanently, hypersensitive ('sensitized') to drugs and drug-associated stimuli. The sensitization of dopamine systems is gated by associative learning, which causes excessive incentive salience to be attributed to the act of drug taking and to stimuli associated with drug taking. It is specifically the sensitization of incentive salience, therefore, that transforms ordinary 'wanting' into excessive drug craving. (4) It is further proposed that sensitization of the neural systems responsible for incentive salience ('for wanting') can occur independently of changes in neural systems that mediate the subjective pleasurable effects of drugs (drug 'liking') and of neural systems that mediate withdrawal. Thus, sensitization of incentive salience can produce addictive behavior (compulsive drug seeking and drug taking) even if the expectation of drug pleasure or the aversive properties of withdrawal are diminished and even in the face of strong disincentives, including the loss of reputation, job, home and family. We review evidence for this view of addiction and discuss its implications for understanding the psychology and neurobiology of addiction.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Behavioral inhibition, sustained attention, and executive functions: constructing a unifying theory of ADHD.

            Attention deficit hyperactivity disorder (ADHD) comprises a deficit in behavioral inhibition. A theoretical model is constructed that links inhibition to 4 executive neuropsychological functions that appear to depend on it for their effective execution: (a) working memory, (b) self-regulation of affect-motivation-arousal, (c) internalization of speech, and (d) reconstitution (behavioral analysis and synthesis). Extended to ADHD, the model predicts that ADHD should be associated with secondary impairments in these 4 executive abilities and the motor control they afford. The author reviews evidence for each of these domains of functioning and finds it to be strongest for deficits in behavioral inhibition, working memory, regulation of motivation, and motor control in those with ADHD. Although the model is promising as a potential theory of self-control and ADHD, far more research is required to evaluate its merits and the many predictions it makes about ADHD.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The 5-choice serial reaction time task: behavioural pharmacology and functional neurochemistry.

              The developmental history and application of the 5-choice serial reaction time task (5CSRTT) for measuring effects of drugs and other manipulations on attentional performance (and stimulus control) in rats is reviewed. The 5CSRTT has been used for measuring effects of systemic drug treatments and also central manipulations such as neurochemical lesions on various aspects of attentional control, including sustained, selective and divided attention--and is relevant to the definition of neural systems of attention and applications to human disorders such as attention deficit/hyperactivity disorder (ADHD) and Alzheimer's disease. The 5CSRTT is implemented in a specially designed operant chamber with multiple response locations ('nine-hole box') using food reinforcers to maintain performance on baseline sessions (about 100 trials) at criterion levels of accuracy and trials completed. The 5CSRTT can be used for measuring various aspects of attentional control over performance with its main measures of accuracy, premature responding, correct response latencies and latency to collect earned food pellets. The data reviewed include studies mainly of systemic and intra-cerebral effects of adrenoceptor, dopamine receptor, serotoninergic receptor and cholinergic receptor agents. These are compared with investigations of effects of selective chemical neurotoxins and excitotoxins applied to discrete parts of the forebrain, in order to define the neural and neurochemical substrates of attentional function. Furthermore, these results are integrated with findings from in vivo microdialysis in freely moving rats or metabolic studies. The monoaminergic and cholinergic systems appear to play separable roles in different aspects of performance controlled by the 5CSRTT, in neural systems centred on the prefrontal cortex, cingulate cortex and striatum. These conclusions are considered in the methodological and theoretical context of other psychopharmacological studies of attention in animals and humans.
                Bookmark

                Author and article information

                Journal
                Learn Mem
                Learn. Mem
                learnmem
                learnmem
                Learning & Memory
                Cold Spring Harbor Laboratory Press
                1072-0502
                1549-5485
                February 2014
                : 21
                : 2
                : 82-89
                Affiliations
                [1 ]Molecular Cognition Laboratory, Department of Psychology, University of California, San Diego, California 92093-0109, USA
                [2 ]Program in Neurosciences, University of California, San Diego, California 92093-0109, USA
                Author notes
                [3 ]Corresponding author E-mail stephana@ 123456ucsd.edu
                Article
                CarmackLM033613
                10.1101/lm.033613.113
                3895222
                24434869
                4170b670-13ec-4180-a82f-67ca5a6368d1
                © 2014 Carmack et al.; Published by Cold Spring Harbor Laboratory Press

                This article is distributed exclusively by Cold Spring Harbor Laboratory Press for the first 12 months after the full-issue publication date (see http://learnmem.cshlp.org/site/misc/terms.xhtml). After 12 months, it is available under a Creative Commons License (Attribution-NonCommercial 3.0 Unported), as described at http://creativecommons.org/licenses/by-nc/3.0/.

                History
                : 15 October 2013
                : 28 October 2013
                Categories
                Research

                Comments

                Comment on this article