5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Influence of Anodizing Conditions on Biotribological and Micromechanical Properties of Ti–13Zr–13Nb Alloy

      , , , , ,
      Materials

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The biomedical Ti–13Zr–13Nb bi-phase (α + β) alloy for long-term applications in implantology has recently been developed. The porous oxide nanotubes’ (ONTs) layers of various geometries and lengths on the Ti–13Zr–13Nb alloy surface can be produced by anodizing to improve osseointegration. This work was aimed at how anodizing conditions determinatine the micromechanical and biotribological properties of the Ti–13Zr–13Nb alloy. First-generation (1G), second-generation (2G), and third-generation (3G) ONT layers were produced on the Ti–13Zr–13Nb alloy surface by anodizing. The microstructure was characterized using SEM. Micromechanical properties were investigated by the Vickers microhardness test under variable loads. Biotribological properties were examined in Ringer’s solution in a reciprocating motion in the ball-on-flat system. The 2D roughness profiles method was used to assess the wear tracks of the tested materials. Wear scars’ analysis of the ZrO2 ball was performed using optical microscopy. It was found that the composition of the electrolyte with the presence of fluoride ions was an essential factor influencing the micromechanical and biotribological properties of the obtained ONT layers. The three-body abrasion wear mechanism was proposed to explain the biotribological wear in Ringer’s solution for the Ti–13Zr–13Nb alloy before and after anodizing.

          Related collections

          Most cited references41

          • Record: found
          • Abstract: not found
          • Article: not found

          Metallic implant biomaterials

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Biocompatibility of Ti-alloys for long-term implantation.

            The design of new low-cost Ti-alloys with high biocompatibility for implant applications, using ubiquitous alloying elements in order to establish the strategic method for suppressing utilization of rare metals, is a challenge. To meet the demands of longer human life and implantation in younger patients, the development of novel metallic alloys for biomedical applications is aiming at providing structural materials with excellent chemical, mechanical and biological biocompatibility. It is, therefore, likely that the next generation of structural materials for replacing hard human tissue would be of those Ti-alloys that do not contain any of the cytotoxic elements, elements suspected of causing neurological disorders or elements that have allergic effect. Among the other mechanical properties, the low Young's modulus alloys have been given a special attention recently, in order to avoid the occurrence of stress shielding after implantation. Therefore, many Ti-alloys were developed consisting of biocompatible elements such as Ti, Zr, Nb, Mo, and Ta, and showed excellent mechanical properties including low Young's modulus. However, a recent attention was directed towards the development of low cost-alloys that have a minimum amount of the high melting point and high cost rare-earth elements such as Ta, Nb, Mo, and W. This comes with substituting these metals with the common low cost, low melting point and biocompatible metals such as Fe, Mn, Sn, and Si, while keeping excellent mechanical properties without deterioration. Therefore, the investigation of mechanical and biological biocompatibility of those low-cost Ti-alloys is highly recommended now lead towards commercial alloys with excellent biocompatibility for long-term implantation.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Vanadium ionic species from degradation of Ti-6Al-4V metallic implants: In vitro cytotoxicity and speciation evaluation

              Among the metallic materials used in biomedical industry, the most common choice for orthopedics and dental implants is titanium (Ti) and its alloys, mainly due to their superior corrosion and tribocorrosion resistance and biocompatibility. Under different conditions in vivo, such as different pH levels, composition of body fluid and mechanical loads, metallic materials may suffer from degradation, resulting in the release of undesired wear particles and ions. In particular, the Ti-6Al-4V system represents almost half of the production of Ti as a biomaterial and many concerns have been raised about titanium, aluminum and vanadium ions releasing. This work evaluates the cytotoxic effects of vanadium ionic species generated from Ti-6Al-4V surfaces regarding mouse pre-osteoblasts and fibroblasts. In our cell viability tests, we noticed a significant decrease in the fibroblasts' cell viability with vanadium concentrations (23 μM) close to those previously reported to be observed in vivo in patients with poor functioning of their medical devices based on Ti-6Al-4V (30 μM). Speciation modelling was carried-out, for the first time, to this system. Results of the modelling reveal that vanadates(V), namely H2VO4- and HVO42-, are the main species present in cell culture media. Otherwise, in synovial fluids of individuals with poorly functioning implants, wherein the concentration of vanadium may go up to ca. 30 μM, the tentative theoretical speciation data indicates a high occurrence probability for VV- and VIV-species bound to albumin and hyaluronic acid. In conclusion, even though relatively low concentrations of vanadium may be released from Ti-6Al-4V implants in vivo, the continuous contact with peri-implant cells for long periods of time may represent a potentially hazardous situation.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                MATEG9
                Materials
                Materials
                1996-1944
                February 2023
                January 31 2023
                : 16
                : 3
                : 1237
                Article
                10.3390/ma16031237
                4102dff7-c42a-454d-9e95-316b00c380a6
                © 2023

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article