17
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Genetic Hypothesis and Pharmacogenetics Side of Renin-Angiotensin-System in COVID-19

      other
      1 , 2 , 3 , * , 1
      Genes
      MDPI
      ACE1, ACE2, RAS-pathway, COVID-19, SARS-CoV-2, prognostic markers, gender-gap

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The importance of host genetics and demography in coronavirus disease 2019 (COVID-19) is a crucial aspect of infection, prognosis and associated case fatality rate. Individual genetic landscapes can contribute to understand Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) burden and can give information on how to fight virus spreading and the associated severe acute respiratory distress syndrome (ARDS). The spread and pathogenicity of the virus have become pandemic on specific geographic areas and ethnicities. Interestingly, SARS-CoV-2 firstly emerged in East Asia and next in Europe, where it has caused higher morbidity and mortality. This is a peculiar feature of SARS-CoV-2, different from past global viral infections (i.e., SARS-1 or MERS); it shares with the previous pandemics strong age- and sex-dependent gaps in the disease outcome. The observation that the severest COVID-19 patients are more likely to have a history of hypertension, diabetes and/or cardiovascular disease and receive Renin-Angiotensin-System (RAS) inhibitor treatment raised the hypothesis that RAS-unbalancing may have a crucial role. Accordingly, we recently published a genetic hypothesis on the role of RAS-pathway genes ( ACE1, rs4646994, rs1799752, rs4340, rs13447447; and ACE2, rs2285666, rs1978124, rs714205) and ABO-locus (rs495828, rs8176746) in COVID-19 prognosis, suspecting inherited genetic predispositions to be predictive of COVID-19 severity. In addition, recently, Genome-Wide Association Studies (GWAS) found COVID-19-association signals at locus 3p21.31 (rs11385942) comprising the solute carrier SLC6A20 (Na+ and Cl- coupled transporter family) and at locus 9q34.2 (rs657152) coincident with ABO-blood group (rs8176747, rs41302905, rs8176719), and interestingly, both loci are associated to RAS-pathway. Finally, ACE1 and ACE2 haplotypes seem to provide plausible explanations for why SARS-CoV-2 have affected more heavily some ethnic groups, namely people with European ancestry, than Asians.

          Related collections

          Most cited references121

          • Record: found
          • Abstract: found
          • Article: not found

          SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor

          Summary The recent emergence of the novel, pathogenic SARS-coronavirus 2 (SARS-CoV-2) in China and its rapid national and international spread pose a global health emergency. Cell entry of coronaviruses depends on binding of the viral spike (S) proteins to cellular receptors and on S protein priming by host cell proteases. Unravelling which cellular factors are used by SARS-CoV-2 for entry might provide insights into viral transmission and reveal therapeutic targets. Here, we demonstrate that SARS-CoV-2 uses the SARS-CoV receptor ACE2 for entry and the serine protease TMPRSS2 for S protein priming. A TMPRSS2 inhibitor approved for clinical use blocked entry and might constitute a treatment option. Finally, we show that the sera from convalescent SARS patients cross-neutralized SARS-2-S-driven entry. Our results reveal important commonalities between SARS-CoV-2 and SARS-CoV infection and identify a potential target for antiviral intervention.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis

            Abstract Severe acute respiratory syndrome (SARS) is an acute infectious disease that spreads mainly via the respiratory route. A distinct coronavirus (SARS‐CoV) has been identified as the aetiological agent of SARS. Recently, a metallopeptidase named angiotensin‐converting enzyme 2 (ACE2) has been identified as the functional receptor for SARS‐CoV. Although ACE2 mRNA is known to be present in virtually all organs, its protein expression is largely unknown. Since identifying the possible route of infection has major implications for understanding the pathogenesis and future treatment strategies for SARS, the present study investigated the localization of ACE2 protein in various human organs (oral and nasal mucosa, nasopharynx, lung, stomach, small intestine, colon, skin, lymph nodes, thymus, bone marrow, spleen, liver, kidney, and brain). The most remarkable finding was the surface expression of ACE2 protein on lung alveolar epithelial cells and enterocytes of the small intestine. Furthermore, ACE2 was present in arterial and venous endothelial cells and arterial smooth muscle cells in all organs studied. In conclusion, ACE2 is abundantly present in humans in the epithelia of the lung and small intestine, which might provide possible routes of entry for the SARS‐CoV. This epithelial expression, together with the presence of ACE2 in vascular endothelium, also provides a first step in understanding the pathogenesis of the main SARS disease manifestations. Copyright © 2004 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Are patients with hypertension and diabetes mellitus at increased risk for COVID-19 infection?

              The most distinctive comorbidities of 32 non-survivors from a group of 52 intensive care unit patients with novel coronavirus disease 2019 (COVID-19) in the study by Xiaobo Yang and colleagues 1 were cerebrovascular diseases (22%) and diabetes (22%). Another study 2 included 1099 patients with confirmed COVID-19, of whom 173 had severe disease with comorbidities of hypertension (23·7%), diabetes mellitus (16·2%), coronary heart diseases (5·8%), and cerebrovascular disease (2·3%). In a third study, 3 of 140 patients who were admitted to hospital with COVID-19, 30% had hypertension and 12% had diabetes. Notably, the most frequent comorbidities reported in these three studies of patients with COVID-19 are often treated with angiotensin-converting enzyme (ACE) inhibitors; however, treatment was not assessed in either study. Human pathogenic coronaviruses (severe acute respiratory syndrome coronavirus [SARS-CoV] and SARS-CoV-2) bind to their target cells through angiotensin-converting enzyme 2 (ACE2), which is expressed by epithelial cells of the lung, intestine, kidney, and blood vessels. 4 The expression of ACE2 is substantially increased in patients with type 1 or type 2 diabetes, who are treated with ACE inhibitors and angiotensin II type-I receptor blockers (ARBs). 4 Hypertension is also treated with ACE inhibitors and ARBs, which results in an upregulation of ACE2. 5 ACE2 can also be increased by thiazolidinediones and ibuprofen. These data suggest that ACE2 expression is increased in diabetes and treatment with ACE inhibitors and ARBs increases ACE2 expression. Consequently, the increased expression of ACE2 would facilitate infection with COVID-19. We therefore hypothesise that diabetes and hypertension treatment with ACE2-stimulating drugs increases the risk of developing severe and fatal COVID-19. If this hypothesis were to be confirmed, it could lead to a conflict regarding treatment because ACE2 reduces inflammation and has been suggested as a potential new therapy for inflammatory lung diseases, cancer, diabetes, and hypertension. A further aspect that should be investigated is the genetic predisposition for an increased risk of SARS-CoV-2 infection, which might be due to ACE2 polymorphisms that have been linked to diabetes mellitus, cerebral stroke, and hypertension, specifically in Asian populations. Summarising this information, the sensitivity of an individual might result from a combination of both therapy and ACE2 polymorphism. We suggest that patients with cardiac diseases, hypertension, or diabetes, who are treated with ACE2-increasing drugs, are at higher risk for severe COVID-19 infection and, therefore, should be monitored for ACE2-modulating medications, such as ACE inhibitors or ARBs. Based on a PubMed search on Feb 28, 2020, we did not find any evidence to suggest that antihypertensive calcium channel blockers increased ACE2 expression or activity, therefore these could be a suitable alternative treatment in these patients. © 2020 Juan Gaertner/Science Photo Library 2020 Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website. Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
                Bookmark

                Author and article information

                Journal
                Genes (Basel)
                Genes (Basel)
                genes
                Genes
                MDPI
                2073-4425
                03 September 2020
                September 2020
                : 11
                : 9
                : 1044
                Affiliations
                [1 ]Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, 44121 Ferrara, Italy; veronica.tisato@ 123456unife.it
                [2 ]Centre Hemostasis & Thrombosis, University of Ferrara, 44121 Ferrara, Italy
                [3 ]University Centre for Studies on Gender Medicine, University of Ferrara, 44121 Ferrara, Italy
                Author notes
                [* ]Correspondence: d.gemmati@ 123456unife.it
                Author information
                https://orcid.org/0000-0001-6213-6120
                https://orcid.org/0000-0001-8448-066X
                Article
                genes-11-01044
                10.3390/genes11091044
                7563402
                32899439
                40582eec-75f3-4eed-8c4d-fc6d03557b73
                © 2020 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 20 July 2020
                : 02 September 2020
                Categories
                Hypothesis

                ace1,ace2,ras-pathway,covid-19,sars-cov-2,prognostic markers,gender-gap

                Comments

                Comment on this article