36
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Hydrocarbons in Deep-Sea Sediments following the 2010 Deepwater Horizon Blowout in the Northeast Gulf of Mexico

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The Deepwater Horizon (DWH) spill released 4.9 million barrels of oil into the Gulf of Mexico (GoM) over 87 days. Sediment and water sampling efforts were concentrated SW of the DWH and in coastal areas. Here we present geochemistry data from sediment cores collected in the aftermath of the DWH event from 1000 – 1500 m water depth in the DeSoto Canyon, NE of the DWH wellhead. Cores were analyzed at high-resolution (at 2 mm and 5 mm intervals) in order to evaluate the concentration, composition and input of hydrocarbons to the seafloor. Specifically, we analyzed total organic carbon (TOC), aliphatic, polycyclic aromatic hydrocarbon (PAHs), and biomarker (hopanes, steranes, diasteranes) compounds to elucidate possible sources and transport pathways for deposition of hydrocarbons. Results showed higher hydrocarbon concentrations during 2010-2011 compared to years prior to 2010. Hydrocarbon inputs in 2010-2011 were composed of a mixture of sources including terrestrial, planktonic, and weathered oil. Our results suggest that after the DWH event, both soluble and highly insoluble hydrocarbons were deposited at enhanced rates in the deep-sea. We proposed two distinct transport pathways of hydrocarbon deposition: 1) sinking of oil-particle aggregates (hydrocarbon-contaminated marine snow and/or suspended particulate material), and 2) advective transport and direct contact of the deep plume with the continental slope surface sediments between 1000-1200 m. Our findings underline the complexity of the depositional event observed in the aftermath of the DWH event in terms of multiple sources, variable concentrations, and spatial (depth-related) variability in the DeSoto Canyon, NE of the DWH wellhead.

          Related collections

          Most cited references25

          • Record: found
          • Abstract: found
          • Article: not found

          A persistent oxygen anomaly reveals the fate of spilled methane in the deep Gulf of Mexico.

          Methane was the most abundant hydrocarbon released during the 2010 Deepwater Horizon oil spill in the Gulf of Mexico. Beyond relevancy to this anthropogenic event, this methane release simulates a rapid and relatively short-term natural release from hydrates into deep water. Based on methane and oxygen distributions measured at 207 stations throughout the affected region, we find that within ~120 days from the onset of release ~3.0 × 10(10) to 3.9 × 10(10) moles of oxygen were respired, primarily by methanotrophs, and left behind a residual microbial community containing methanotrophic bacteria. We suggest that a vigorous deepwater bacterial bloom respired nearly all the released methane within this time, and that by analogy, large-scale releases of methane from hydrate in the deep ocean are likely to be met by a similarly rapid methanotrophic response.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Propane respiration jump-starts microbial response to a deep oil spill.

            The Deepwater Horizon event resulted in suspension of oil in the Gulf of Mexico water column because the leakage occurred at great depth. The distribution and fate of other abundant hydrocarbon constituents, such as natural gases, are also important in determining the impact of the leakage but are not yet well understood. From 11 to 21 June 2010, we investigated dissolved hydrocarbon gases at depth using chemical and isotopic surveys and on-site biodegradation studies. Propane and ethane were the primary drivers of microbial respiration, accounting for up to 70% of the observed oxygen depletion in fresh plumes. Propane and ethane trapped in the deep water may therefore promote rapid hydrocarbon respiration by low-diversity bacterial blooms, priming bacterial populations for degradation of other hydrocarbons in the aging plume.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Chemical data quantify Deepwater Horizon hydrocarbon flow rate and environmental distribution.

              Detailed airborne, surface, and subsurface chemical measurements, primarily obtained in May and June 2010, are used to quantify initial hydrocarbon compositions along different transport pathways (i.e., in deep subsurface plumes, in the initial surface slick, and in the atmosphere) during the Deepwater Horizon oil spill. Atmospheric measurements are consistent with a limited area of surfacing oil, with implications for leaked hydrocarbon mass transport and oil drop size distributions. The chemical data further suggest relatively little variation in leaking hydrocarbon composition over time. Although readily soluble hydrocarbons made up ∼25% of the leaking mixture by mass, subsurface chemical data show these compounds made up ∼69% of the deep plume mass; only ∼31% of the deep plume mass was initially transported in the form of trapped oil droplets. Mass flows along individual transport pathways are also derived from atmospheric and subsurface chemical data. Subsurface hydrocarbon composition, dissolved oxygen, and dispersant data are used to assess release of hydrocarbons from the leaking well. We use the chemical measurements to estimate that (7.8 ± 1.9) × 10(6) kg of hydrocarbons leaked on June 10, 2010, directly accounting for roughly three-quarters of the total leaked mass on that day. The average environmental release rate of (10.1 ± 2.0) × 10(6) kg/d derived using atmospheric and subsurface chemical data agrees within uncertainties with the official average leak rate of (10.2 ± 1.0) × 10(6) kg/d derived using physical and optical methods.
                Bookmark

                Author and article information

                Contributors
                Role: Academic Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, CA USA )
                1932-6203
                28 May 2015
                2015
                : 10
                : 5
                : e0128371
                Affiliations
                [1 ]University of South Florida, College of Marine Science, St. Petersburg, Florida, 33701, United States of America
                [2 ]Eckerd College, St. Petersburg, Florida, 33711, United States of America
                University of California, Merced, UNITED STATES
                Author notes

                Competing Interests: The authors declare that that the funding source (Gulf of Mexico Research Initiative) does not alter the authors' adherence to PLOS ONE policies on sharing data and materials.

                Conceived and designed the experiments: ICR GRB DWH DJH. Performed the experiments: ICR DJH. Analyzed the data: ICR PTS GRB RAL EAG DJH. Contributed reagents/materials/analysis tools: ICR PTS GRB RAL GE EAG. Wrote the paper: ICR.

                Article
                PONE-D-14-52987
                10.1371/journal.pone.0128371
                4447447
                26020923
                40343801-cad4-4947-8103-2db58d9eaf0b
                Copyright @ 2015

                This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

                History
                : 25 November 2014
                : 25 April 2015
                Page count
                Figures: 4, Tables: 4, Pages: 23
                Funding
                The authors acknowledge the British Petroleum/Florida Institute of Oceanography (BP/FIO)-Gulf Oil Spill Prevention, Response, and Recovery Grants Program for funding several of the initial research cruises and laboratory analysis during 2010 and 2011. This research was made possible by funding from BP/The Gulf of Mexico Research Initiative (GOMRI), specifically the Center for Integrated Modeling and Analysis of the Gulf Ecosystem (C-IMAGE) and the Deep Sea to Coast Connectivity in the Eastern Gulf of Mexico (Deep-C) consortia.
                Categories
                Research Article
                Custom metadata
                Data are available from The Gulf of Mexico Research Initiative Information and Data Cooperative (GRIIDC), UDI: R1.x135.119:0004.

                Uncategorized
                Uncategorized

                Comments

                Comment on this article