10
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Generation and Feasibility Assessment of a New Vehicle for Cell-Based Therapy for Treating Corneal Endothelial Dysfunction

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The corneal endothelium maintains corneal transparency by its pump and barrier functions; consequently, its decompensation due to any pathological reason causes severe vision loss due to corneal haziness. Corneal transplantation is the only therapeutic choice for treating corneal endothelial dysfunction, but associated problems, such as a shortages of donor corneas, the difficulty of the surgical procedure, and graft failure, still need to be resolved. Regenerative medicine is attractive to researchers as a means of providing innovative therapies for corneal endothelial dysfunction, as it now does for other diseases. We previously demonstrated the successful regeneration of corneal endothelium in animal models by injecting cultured corneal endothelial cells (CECs) in combination with a Rho kinase (ROCK) inhibitor. The purpose of the present study was to optimize the vehicle for clinical use in cell-based therapy. Our screening of cell culture media revealed that RELAR medium promoted CEC adhesion. We then modified RELAR medium by removing hormones, growth factors, and potentially toxic materials to generate a cell therapy vehicle (CTV) composed of amino acid, salts, glucose, and vitamins. Injection of CECs in CTV enabled efficient engraftment and regeneration of the corneal endothelium in the rabbit corneal endothelial dysfunction model, with restoration of a transparent cornea. The CECs retained >85% viability after a 24 hour preservation as a cell suspension in CTV at 4°C and maintained their potency to regenerate the corneal endothelium in vivo. The vehicle developed here is clinically applicable for cell-based therapy aimed at treating the corneal endothelium. Our strategy involves the generation of vehicle from a culture medium appropriate for a given cell type by removing materials that are not favorable for clinical use.

          Related collections

          Most cited references21

          • Record: found
          • Abstract: found
          • Article: not found

          Central corneal endothelial cell changes over a ten-year period.

          To obtain longitudinal data to estimate long-term morphometric changes in normal human corneal endothelia. Ten years after an initial study, the authors rephotographed the central corneal endothelium of 52 normal subjects with the same contact specular microscope. The findings for the 10 subjects younger than 18 years of age at the initial examination were considered separately. For the remaining 42 adult subjects, the time between examinations averaged 10.6 +/- 0.2 years (range, 10.1 to 11 years). At the recent examination, these subjects' ages averaged 59.5 +/- 16.8 years (range, 30 to 84 years). Outlines of 100 cells for each cornea were digitized. For the 42 adult subjects, the mean endothelial cell density decreased during the 10.6-year interval from 2715 +/- 301 cells/mm2 to 2539 +/- 284 cells/mm2 (P < 0.001). The calculated exponential cell loss rate over this interval was 0.6% +/- 0.5% per year. There was no statistically significant correlation between cell loss rate and age. During the 10.6-year interval, the coefficient of variation of cell area increased from 0.26 +/- 0.05 to 0.29 +/- 0.06 (P < 0.001), and the percentage of hexagonal cells decreased from 67% +/- 8% to 64% +/- 6% (P = 0.003). For the 10 subjects 5 to 15 years of age at the initial examination, the exponential cell loss rate was 1.1% +/- 0.8% per year. Human central endothelial cell density decreases at an average rate of approximately 0.6% per year in normal corneas throughout adult life, with gradual increases in polymegethism and pleomorphism.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Proliferative capacity of corneal endothelial cells.

            The corneal endothelial monolayer helps maintain corneal transparency through its barrier and ionic "pump" functions. This transparency function can become compromised, resulting in a critical loss in endothelial cell density (ECD), corneal edema, bullous keratopathy, and loss of visual acuity. Although penetrating keratoplasty and various forms of endothelial keratoplasty are capable of restoring corneal clarity, they can also have complications requiring re-grafting or other treatments. With the increasing worldwide shortage of donor corneas to be used for keratoplasty, there is a greater need to find new therapies to restore corneal clarity that is lost due to endothelial dysfunction. As a result, researchers have been exploring alternative approaches that could result in the in vivo induction of transient corneal endothelial cell division or the in vitro expansion of healthy endothelial cells for corneal bioengineering as treatments to increase ECD and restore visual acuity. This review presents current information regarding the ability of human corneal endothelial cells (HCEC) to divide as a basis for the development of new therapies. Information will be presented on the positive and negative regulation of the cell cycle as background for the studies to be discussed. Results of studies exploring the proliferative capacity of HCEC will be presented and specific conditions that affect the ability of HCEC to divide will be discussed. Methods that have been tested to induce transient proliferation of HCEC will also be presented. This review will discuss the effect of donor age and endothelial topography on relative proliferative capacity of HCEC, as well as explore the role of nuclear oxidative DNA damage in decreasing the relative proliferative capacity of HCEC. Finally, potential new research directions will be discussed that could take advantage of and/or improve the proliferative capacity of these physiologically important cells in order to develop new treatments to restore corneal clarity. Copyright © 2011 Elsevier Ltd. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Cultivated corneal endothelial cell sheet transplantation in a primate model.

              To examine the feasibility of cultivated corneal endothelial cell transplantation in a primate model. Monkey corneal endothelial cells (MCECs) obtained from three cynomolgus monkeys were cultivated, with subcultures grown on collagen type I carriers for 4 weeks. The corneal endothelium of the right eye of six monkeys was mechanically scraped, after which a cultivated MCEC sheet was brought into the anterior chamber of four eyes and fixed to Descemet's membrane by air. As the control, a collagen sheet without MCECs was transplanted into one eye of one monkey, and a suspension of cultivated MCECs was injected into the anterior chamber in one eye. Cultivated MCECs produced a confluent monolayer of closely attached hexagonal cells that showed both ZO-1 and Na(+)-K(+) ATPase expression. In the early postoperative period MCEC sheets were attached to Descemet's membrane and corneal clarity was recovered. The recovered clarity was accompanied by a decrease in corneal thickness. Fluorescein DiI labeled donor corneal endothelial cells were detected on the host cornea on postoperative day 7. Six months after transplantation MCEC-transplanted corneas remained clear, and hexagonal cells were observed by in vivo specular microscopy with a density of 1992 to 2475 cells/mm(2). Control eyes showed irreversible bullous keratopathy that precluded pachymetry and specular microscopy. A model of cultivated corneal endothelial transplantation for corneal endothelial dysfunction was established in primates whose corneal endothelial cells have less proliferative capacity in vivo. Our results suggest that this is a useful model for long-term observation in advance of the future clinical application of cultivated corneal endothelial transplantation.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, CA USA )
                1932-6203
                29 June 2016
                2016
                : 11
                : 6
                : e0158427
                Affiliations
                [1 ]Department of Biomedical Engineering, Faculty of Life and Medical Sciences, Doshisha University, Kyotanabe, Japan
                [2 ]Cell Science & Technology Institute, Inc., Sendai, Japan
                Cedars-Sinai Medical Center; UCLA School of Medicine, UNITED STATES
                Author notes

                Competing Interests: The authors have declared that no competing interests exist.

                Conceived and designed the experiments: NO TI NK. Performed the experiments: NO KK RI DM TS MN. Analyzed the data: NO KK RI DM TS MN NK. Contributed reagents/materials/analysis tools: YK TI NK. Wrote the paper: NO.

                Article
                PONE-D-16-08425
                10.1371/journal.pone.0158427
                4927169
                27355373
                3ff68a44-4729-468f-aa27-c3963c381fba
                © 2016 Okumura et al

                This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 27 February 2016
                : 15 June 2016
                Page count
                Figures: 4, Tables: 0, Pages: 14
                Funding
                Funded by: funder-id http://dx.doi.org/10.13039/501100001700, Ministry of Education, Culture, Sports, Science, and Technology;
                Award ID: Program for the Strategic Research Foundation at Private Universities
                Award Recipient :
                Program for the Strategic Research Foundation at Private Universities from Ministry of Education, Culture, Sports, Science and Technology http://www.mext.go.jp/a_menu/koutou/shinkou/07021403/002/002/1218299.htm.
                Categories
                Research Article
                Biology and Life Sciences
                Anatomy
                Ocular System
                Ocular Anatomy
                Cornea
                Medicine and Health Sciences
                Anatomy
                Ocular System
                Ocular Anatomy
                Cornea
                Biology and Life Sciences
                Anatomy
                Cardiovascular Anatomy
                Endothelium
                Medicine and Health Sciences
                Anatomy
                Cardiovascular Anatomy
                Endothelium
                Biology and Life Sciences
                Anatomy
                Head
                Eyes
                Medicine and Health Sciences
                Anatomy
                Head
                Eyes
                Biology and Life Sciences
                Anatomy
                Ocular System
                Eyes
                Medicine and Health Sciences
                Anatomy
                Ocular System
                Eyes
                Research and Analysis Methods
                Model Organisms
                Animal Models
                Rabbits
                Biology and Life Sciences
                Organisms
                Animals
                Vertebrates
                Amniotes
                Mammals
                Rabbits
                Medicine and Health Sciences
                Neurology
                Neurobiology of Disease and Regeneration
                Medicine and Health Sciences
                Surgical and Invasive Medical Procedures
                Ophthalmic Procedures
                Corneal Transplantation
                Medicine and Health Sciences
                Surgical and Invasive Medical Procedures
                Transplantation
                Corneal Transplantation
                Medicine and Health Sciences
                Endocrinology
                Endocrine Physiology
                Growth Factors
                Biology and Life Sciences
                Physiology
                Endocrine Physiology
                Growth Factors
                Medicine and Health Sciences
                Physiology
                Endocrine Physiology
                Growth Factors
                Medicine and Health Sciences
                Surgical and Invasive Medical Procedures
                Custom metadata
                Underlying participant-level data was provided in a supporting information file.

                Uncategorized
                Uncategorized

                Comments

                Comment on this article