6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Biological response to prosthetic debris.

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Joint arthroplasty had revolutionized the outcome of orthopaedic surgery. Extensive and collaborative work of many innovator surgeons had led to the development of durable bearing surfaces, yet no single material is considered absolutely perfect. Generation of wear debris from any part of the prosthesis is unavoidable. Implant loosening secondary to osteolysis is the most common mode of failure of arthroplasty. Osteolysis is the resultant of complex contribution of the generated wear debris and the mechanical instability of the prosthetic components. Roughly speaking, all orthopedic biomaterials may induce a universal biologic host response to generated wear débris with little specific characteristics for each material; but some debris has been shown to be more cytotoxic than others. Prosthetic wear debris induces an extensive biological cascade of adverse cellular responses, where macrophages are the main cellular type involved in this hostile inflammatory process. Macrophages cause osteolysis indirectly by releasing numerous chemotactic inflammatory mediators, and directly by resorbing bone with their membrane microstructures. The bio-reactivity of wear particles depends on two major elements: particle characteristics (size, concentration and composition) and host characteristics. While any particle type may enhance hostile cellular reaction, cytological examination demonstrated that more than 70% of the debris burden is constituted of polyethylene particles. Comprehensive understanding of the intricate process of osteolysis is of utmost importance for future development of therapeutic modalities that may delay or prevent the disease progression.

          Related collections

          Author and article information

          Journal
          World J Orthop
          World journal of orthopedics
          Baishideng Publishing Group Inc.
          2218-5836
          2218-5836
          Mar 18 2015
          : 6
          : 2
          Affiliations
          [1 ] Diana Bitar, Javad Parvizi, the Rothman Institute at Thomas Jefferson University, Department of Orthopaedic Surgery, Philadelphia, PA 19107, United States.
          Article
          10.5312/wjo.v6.i2.172
          4363800
          25793158
          3fda77aa-87a3-42f7-a655-cec6499adb4e
          History

          Macrophages,Osteolysis,Phagocytosis,Polyethylene,Adverse reaction,Chemotaxis,Cytokines,Debris

          Comments

          Comment on this article