Deep learning has played an important role in many fields, which shows significant potential for cryptanalysis. Although these existing works opened a new direction of machine learning aided cryptanalysis, there is still a research gap that researchers are eager to fill. How to further improve neural distinguishers? In this paper, we propose a new algorithm and model to improve neural distinguishers in terms of accuracy and the number of rounds. First, we design an algorithm based on SAT to improve neural distinguishers. With the help of SAT/SMT solver, we obtain new effective neural distinguishers of SIMON using the input differences of high-probability differential characteristics. Second, we propose a new neural distinguisher model using multiple output differences. Inspired by the existing works and data augmentation in deep learning, we use the output differences to exploit more derived features and train neural distinguishers, by splicing output differences into a matrix as a sample. Based on the new model, we construct neural distinguishers of SIMON and SPECK with round and accuracy promotion. Utilizing our neural distinguishers, we can distinguish reduced-round SIMON or SPECK from pseudorandom permutation better.
See how this article has been cited at scite.ai
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.