120
views
1
recommends
+1 Recommend
1 collections
    1
    shares
      • Record: found
      • Abstract: found
      • Article: found

      Manifestation, Drivers, and Emergence of Open Ocean Deoxygenation

      1
      Annual Review of Marine Science
      Annual Reviews

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Most cited references149

          • Record: found
          • Abstract: found
          • Article: not found

          Expanding oxygen-minimum zones in the tropical oceans.

          Oxygen-poor waters occupy large volumes of the intermediate-depth eastern tropical oceans. Oxygen-poor conditions have far-reaching impacts on ecosystems because important mobile macroorganisms avoid or cannot survive in hypoxic zones. Climate models predict declines in oceanic dissolved oxygen produced by global warming. We constructed 50-year time series of dissolved-oxygen concentration for select tropical oceanic regions by augmenting a historical database with recent measurements. These time series reveal vertical expansion of the intermediate-depth low-oxygen zones in the eastern tropical Atlantic and the equatorial Pacific during the past 50 years. The oxygen decrease in the 300- to 700-m layer is 0.09 to 0.34 micromoles per kilogram per year. Reduced oxygen levels may have dramatic consequences for ecosystems and coastal economies.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Thresholds of hypoxia for marine biodiversity.

            Hypoxia is a mounting problem affecting the world's coastal waters, with severe consequences for marine life, including death and catastrophic changes. Hypoxia is forecast to increase owing to the combined effects of the continued spread of coastal eutrophication and global warming. A broad comparative analysis across a range of contrasting marine benthic organisms showed that hypoxia thresholds vary greatly across marine benthic organisms and that the conventional definition of 2 mg O(2)/liter to designate waters as hypoxic is below the empirical sublethal and lethal O(2) thresholds for half of the species tested. These results imply that the number and area of coastal ecosystems affected by hypoxia and the future extent of hypoxia impacts on marine life have been generally underestimated.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Global climate change and intensification of coastal ocean upwelling.

              A Bakun (1990)
              A mechanism exists whereby global greenhouse warning could, by intensifying the alongshore wind stress on the ocean surface, lead to acceleration of coastal upwelling. Evidence from several different regions suggests that the major coastal upwelling systems of the world have been growing in upwelling intensity as greenhouse gases have accumulated in the earth's atmosphere. Thus the cool foggy summer conditions that typify the coastlands of northern California and other similar upwelling regions might, under global warming, become even more pronounced. Effects of enhanced upwelling on the marine ecosystem are uncertain but potentially dramatic.
                Bookmark

                Author and article information

                Journal
                Annual Review of Marine Science
                Annu. Rev. Mar. Sci.
                Annual Reviews
                1941-1405
                1941-0611
                January 03 2018
                January 03 2018
                : 10
                : 1
                : 229-260
                Affiliations
                [1 ]Center for Marine Biodiversity and Conservation, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California 92093-0218, USA;
                Article
                10.1146/annurev-marine-121916-063359
                28961073
                3f592df6-86a2-4d84-b2c0-27c65a877ebc
                © 2018
                History

                Comments

                Comment on this article