42
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Antimicrobial Stewardship: Fighting Antimicrobial Resistance and Protecting Global Public Health

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Antimicrobial resistance (AMR) is a serious threat to global public health. It increases morbidity and mortality, and is associated with high economic costs due to its health care burden. Infections with multidrug-resistant (MDR) bacteria also have substantial implications on clinical and economic outcomes. Moreover, increased indiscriminate use of antibiotics during the COVID-19 pandemic will heighten bacterial resistance and ultimately lead to more deaths. This review highlights AMR’s scale and consequences, the importance, and implications of an antimicrobial stewardship program (ASP) to fight resistance and protect global health. Antimicrobial stewardship (AMS), an organizational or system-wide health-care strategy, is designed to promote, improve, monitor, and evaluate the rational use of antimicrobials to preserve their future effectiveness, along with the promotion and protection of public health. ASP has been very successful in promoting antimicrobials’ appropriate use by implementing evidence-based interventions. The “One Health” approach, a holistic and multisectoral approach, is also needed to address AMR’s rising threat. AMS practices, principles, and interventions are critical steps towards containing and mitigating AMR. Evidence-based policies must guide the “One Health” approach, vaccination protocols, health professionals’ education, and the public’s awareness about AMR.

          Related collections

          Most cited references255

          • Record: found
          • Abstract: found
          • Article: not found

          CRISPR provides acquired resistance against viruses in prokaryotes.

          Clustered regularly interspaced short palindromic repeats (CRISPR) are a distinctive feature of the genomes of most Bacteria and Archaea and are thought to be involved in resistance to bacteriophages. We found that, after viral challenge, bacteria integrated new spacers derived from phage genomic sequences. Removal or addition of particular spacers modified the phage-resistance phenotype of the cell. Thus, CRISPR, together with associated cas genes, provided resistance against phages, and resistance specificity is determined by spacer-phage sequence similarity.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The antibiotic resistance crisis: part 1: causes and threats.

            Decades after the first patients were treated with antibiotics, bacterial infections have again become a threat because of the rapid emergence of resistant bacteria-a crisis attributed to abuse of these medications and a lack of new drug development.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Attributable deaths and disability-adjusted life-years caused by infections with antibiotic-resistant bacteria in the EU and the European Economic Area in 2015: a population-level modelling analysis

              Summary Background Infections due to antibiotic-resistant bacteria are threatening modern health care. However, estimating their incidence, complications, and attributable mortality is challenging. We aimed to estimate the burden of infections caused by antibiotic-resistant bacteria of public health concern in countries of the EU and European Economic Area (EEA) in 2015, measured in number of cases, attributable deaths, and disability-adjusted life-years (DALYs). Methods We estimated the incidence of infections with 16 antibiotic resistance–bacterium combinations from European Antimicrobial Resistance Surveillance Network (EARS-Net) 2015 data that was country-corrected for population coverage. We multiplied the number of bloodstream infections (BSIs) by a conversion factor derived from the European Centre for Disease Prevention and Control point prevalence survey of health-care-associated infections in European acute care hospitals in 2011–12 to estimate the number of non-BSIs. We developed disease outcome models for five types of infection on the basis of systematic reviews of the literature. Findings From EARS-Net data collected between Jan 1, 2015, and Dec 31, 2015, we estimated 671 689 (95% uncertainty interval [UI] 583 148–763 966) infections with antibiotic-resistant bacteria, of which 63·5% (426 277 of 671 689) were associated with health care. These infections accounted for an estimated 33 110 (28 480–38 430) attributable deaths and 874 541 (768 837–989 068) DALYs. The burden for the EU and EEA was highest in infants (aged <1 year) and people aged 65 years or older, had increased since 2007, and was highest in Italy and Greece. Interpretation Our results present the health burden of five types of infection with antibiotic-resistant bacteria expressed, for the first time, in DALYs. The estimated burden of infections with antibiotic-resistant bacteria in the EU and EEA is substantial compared with that of other infectious diseases, and has increased since 2007. Our burden estimates provide useful information for public health decision-makers prioritising interventions for infectious diseases. Funding European Centre for Disease Prevention and Control.
                Bookmark

                Author and article information

                Journal
                Infect Drug Resist
                Infect Drug Resist
                idr
                idr
                Infection and Drug Resistance
                Dove
                1178-6973
                29 December 2020
                2020
                : 13
                : 4713-4738
                Affiliations
                [1 ]Faculty of Medical Sciences, The University of the West Indies, Cave Hill Campus , Bridgetown, Barbados
                [2 ]School of Medicine, American University of Integrative Sciences , Bridgetown, Barbados
                [3 ]Faculty of Medicine and Defence Health, Universiti Pertahanan, Nasional Malaysia (National Defence University of Malaysia) , Kuala Lumpur, Malaysia
                Author notes
                Correspondence: Mainul Haque The Unit of Pharmacology, Faculty of Medicine and Defence Health, Universiti Pertahanan, Nasional Malaysia (National Defence University of Malaysia) , Kem Perdana Sungai Besi, Kuala Lumpur, 57000, MalaysiaTel +60 10 926 5543 Email runurono@gmail.com
                Author information
                http://orcid.org/0000-0003-3398-8695
                http://orcid.org/0000-0002-7005-8801
                http://orcid.org/0000-0002-2173-7322
                http://orcid.org/0000-0003-0287-3959
                http://orcid.org/0000-0001-7532-1229
                http://orcid.org/0000-0002-6124-7993
                http://orcid.org/0000-0002-1891-8966
                Article
                290835
                10.2147/IDR.S290835
                7778387
                33402841
                3f18deab-8660-4625-a17b-20046efb44c1
                © 2020 Majumder et al.

                This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License ( http://creativecommons.org/licenses/by-nc/3.0/). By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms ( https://www.dovepress.com/terms.php).

                History
                : 06 November 2020
                : 17 December 2020
                Page count
                Figures: 1, Tables: 5, References: 283, Pages: 26
                Funding
                This paper was not funded.
                Categories
                Review

                Infectious disease & Microbiology
                antibiotics,antimicrobial resistance,multidrug-resistant,antimicrobial stewardship program,one health,global health

                Comments

                Comment on this article