44
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Mitochondrial Dysfunction in Chemotherapy-Induced Peripheral Neuropathy (CIPN)

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The mitochondrial dysfunction has a critical role in several disorders including chemotherapy-induced peripheral neuropathies (CIPN). This is due to a related dysregulation of pathways involving calcium signalling, reactive oxygen species and apoptosis. Vincristine is able to affect calcium movement through the Dorsal Root Ganglia (DRG) neuronal mitochondrial membrane, altering its homeostasis and leading to abnormal neuronal excitability. Paclitaxel induces the opening of the mitochondrial permeability transition pore in axons followed by mitochondrial membrane potential loss, increased reactive oxygen species generation, ATP level reduction, calcium release and mitochondrial swelling. Cisplatin and oxaliplatin form adducts with mitochondrial DNA producing inhibition of replication, disruption of transcription and morphological abnormalities within mitochondria in DRG neurons, leading to a gradual energy failure. Bortezomib is able to modify mitochondrial calcium homeostasis and mitochondrial respiratory chain. Moreover, the expression of a certain number of genes, including those controlling mitochondrial functions, was altered in patients with bortezomib-induced peripheral neuropathy.

          Related collections

          Most cited references114

          • Record: found
          • Abstract: found
          • Article: not found

          Organelle-specific initiation of cell death pathways.

          Nuclear DNA damage and ligation of plasma-membrane death receptors have long been recognized as initial triggers of apoptosis that induce mitochondrial membrane permeabilization (MMP) and/or the direct activation of caspases. Accumulating evidence suggests that other organelles, including the endoplasmic reticulum (ER), lysosomes and the Golgi apparatus, are also major points of integration of pro-apoptotic signalling or damage sensing. Each organelle possesses sensors that detect specific alterations, locally activates signal transduction pathways and emits signals that ensure inter-organellar cross-talk. The ER senses local stress through chaperones, Ca2+-binding proteins and Ca2+ release channels, which might transmit ER Ca2+ responses to mitochondria. The ER also contains several Bcl-2-binding proteins, and Bcl-2 has been reported to exert part of its cytoprotective effect within the ER. Upon membrane destabilization, lysosomes release cathepsins that are endowed with the capacity of triggering MMP. The Golgi apparatus constitutes a privileged site for the generation of the pro-apoptotic mediator ganglioside GD3, facilitates local caspase-2 activation and might serve as a storage organelle for latent death receptors. Intriguingly, most organelle-specific death responses finally lead to either MMP or caspase activation, both of which might function as central integrators of the death pathway, thereby streamlining lysosome-, Golgi- or ER-elicited responses into a common pathway.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Studies of peripheral sensory nerves in paclitaxel-induced painful peripheral neuropathy: evidence for mitochondrial dysfunction.

            Paclitaxel chemotherapy frequently induces neuropathic pain during and often persisting after therapy. The mechanisms responsible for this pain are unknown. Using a rat model of paclitaxel-induced painful peripheral neuropathy, we have performed studies to search for peripheral nerve pathology. Paclitaxel-induced mechano-allodynia and mechano-hyperalgesia were evident after a short delay, peaked at day 27 and finally resolved on day 155. Paclitaxel- and vehicle-treated rats were perfused on days 7, 27 and 160. Portions of saphenous nerves were processed for electron microscopy. There was no evidence of paclitaxel-induced degeneration or regeneration as myelin structure was normal and the number/density of myelinated axons and C-fibres was unaltered by paclitaxel treatment at any time point. In addition, the prevalence of ATF3-positive dorsal root ganglia cells was normal in paclitaxel-treated animals. With one exception, at day 160 in myelinated axons, total microtubule densities were also unaffected by paclitaxel both in C-fibres and myelinated axons. C-fibres were significantly swollen following paclitaxel at days 7 and 27 compared to vehicle. The most striking finding was significant increases in the prevalence of atypical (swollen and vacuolated) mitochondria in both C-fibres (1.6- to 2.3-fold) and myelinated axons (2.4- to 2.6-fold) of paclitaxel-treated nerves at days 7 and 27. Comparable to the pain behaviour, these mitochondrial changes had resolved by day 160. Our data do not support a causal role for axonal degeneration or dysfunction of axonal microtubules in paclitaxel-induced pain. Instead, our data suggest that a paclitaxel-induced abnormality in axonal mitochondria of sensory nerves contributes to paclitaxel-induced pain.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Platinum neurotoxicity pharmacogenetics.

              Cisplatin, carboplatin, and oxaliplatin anticancer drugs are commonly used to treat lung, colorectal, ovarian, breast, head and neck, and genitourinary cancers. However, the efficacy of platinum-based drugs is often compromised because of the substantial risk for severe toxicities, including neurotoxicity. Neurotoxicity can result in both acute and chronic debilitation. Moreover, colorectal cancer patients treated with oxaliplatin discontinue therapy more often because of peripheral neuropathy than tumor progression, potentially compromising patient benefit. Numerous methods to prevent neurotoxicity have thus far proven unsuccessful. To circumvent this life-altering side effect while taking advantage of the antitumor activities of the platinum agents, efforts to identify mechanism-based biomarkers are under way. In this review, we detail findings from the current literature for genetic markers associated with neurotoxicity induced by single-agent and combination platinum chemotherapy. These data have the potential for broad clinical implications if mechanistic associations lead to the development of toxicity modulators to minimize the noxious sequelae of platinum chemotherapy.
                Bookmark

                Author and article information

                Contributors
                Role: Academic Editor
                Journal
                Toxics
                Toxics
                toxics
                Toxics
                MDPI
                2305-6304
                05 June 2015
                June 2015
                : 3
                : 2
                : 198-223
                Affiliations
                Experimental Neurology Unit, Department of Surgery and Translational Medicine, University of Milan-Bicocca, Via Cadore 48, 20900 Monza (MB), Italy; E-Mails: e.pozzi18@ 123456campus.unimib.it (E.P.); valentina.carozzi1@ 123456unimib.it (V.A.C.)
                Author notes
                [* ]Author to whom correspondence should be addressed; E-Mail: annalisa.canta@ 123456unimib.it ; Tel.: +39-02-6448-8122; Fax: +39-02-6448-8250.
                Article
                toxics-03-00198
                10.3390/toxics3020198
                5634687
                29056658
                3eb00c5c-2028-497a-ad18-a239dd7405ea
                © 2015 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 24 April 2015
                : 01 June 2015
                Categories
                Review

                chemotherapy compounds,peripheral neurotoxicity,neuropathic pain,mitochondria,mitotoxicity

                Comments

                Comment on this article