37
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Characterization of Three L-Asparaginases from Maritime Pine ( Pinus pinaster Ait.)

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Asparaginases (ASPG, EC 3.5.1.1) catalyze the hydrolysis of the amide group of L-asparagine producing L-aspartate and ammonium. Three ASPG, PpASPG1, PpASPG2, and PpASPG3, have been identified in the transcriptome of maritime pine ( Pinus pinaster Ait.) that were transiently expressed in Nicotiana benthamiana by agroinfection. The three recombinant proteins were processed in planta to active enzymes and it was found that all mature forms exhibited double activity asparaginase/isoaspartyl dipeptidase but only PpASPG1 was able to catalyze efficiently L-asparagine hydrolysis. PpASPG1 contains a variable region of 77 amino acids that is critical for proteolytic processing of the precursor and is retained in the mature enzyme. Furthermore, the functional analysis of deletion mutants demonstrated that this protein fragment is required for specific recognition of the substrate and favors enzyme stability. Potassium has a limited effect on the activation of maritime pine ASPG what is consistent with the lack of a critical residue essential for interaction of cation. Taken together, the results presented here highlight the specific features of ASPG from conifers when compared to the enzymes from angiosperms.

          Related collections

          Most cited references41

          • Record: found
          • Abstract: found
          • Article: not found

          Amino Acid Catabolism in Plants.

          Amino acids have various prominent functions in plants. Besides their usage during protein biosynthesis, they also represent building blocks for several other biosynthesis pathways and play pivotal roles during signaling processes as well as in plant stress response. In general, pool sizes of the 20 amino acids differ strongly and change dynamically depending on the developmental and physiological state of the plant cell. Besides amino acid biosynthesis, which has already been investigated in great detail, the catabolism of amino acids is of central importance for adjusting their pool sizes but so far has drawn much less attention. The degradation of amino acids can also contribute substantially to the energy state of plant cells under certain physiological conditions, e.g. carbon starvation. In this review, we discuss the biological role of amino acid catabolism and summarize current knowledge on amino acid degradation pathways and their regulation in the context of plant cell physiology.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Assembling the 20 Gb white spruce (Picea glauca) genome from whole-genome shotgun sequencing data

            White spruce (Picea glauca) is a dominant conifer of the boreal forests of North America, and providing genomics resources for this commercially valuable tree will help improve forest management and conservation efforts. Sequencing and assembling the large and highly repetitive spruce genome though pushes the boundaries of the current technology. Here, we describe a whole-genome shotgun sequencing strategy using two Illumina sequencing platforms and an assembly approach using the ABySS software. We report a 20.8 giga base pairs draft genome in 4.9 million scaffolds, with a scaffold N50 of 20 356 bp. We demonstrate how recent improvements in the sequencing technology, especially increasing read lengths and paired end reads from longer fragments have a major impact on the assembly contiguity. We also note that scalable bioinformatics tools are instrumental in providing rapid draft assemblies. Availability: The Picea glauca genome sequencing and assembly data are available through NCBI (Accession#: ALWZ0100000000 PID: PRJNA83435). http://www.ncbi.nlm.nih.gov/bioproject/83435. Contact: ibirol@bcgsc.ca Supplementary information: Supplementary data are available at Bioinformatics online.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Sequencing and Assembly of the 22-Gb Loblolly Pine Genome

              Conifers are the predominant gymnosperm. The size and complexity of their genomes has presented formidable technical challenges for whole-genome shotgun sequencing and assembly. We employed novel strategies that allowed us to determine the loblolly pine (Pinus taeda) reference genome sequence, the largest genome assembled to date. Most of the sequence data were derived from whole-genome shotgun sequencing of a single megagametophyte, the haploid tissue of a single pine seed. Although that constrained the quantity of available DNA, the resulting haploid sequence data were well-suited for assembly. The haploid sequence was augmented with multiple linking long-fragment mate-pair libraries from the parental diploid DNA. For the longest fragments, we used novel fosmid DiTag libraries. Sequences from the linking libraries that did not match the megagametophyte were identified and removed. Assembly of the sequence data were aided by condensing the enormous number of paired-end reads into a much smaller set of longer “super-reads,” rendering subsequent assembly with an overlap-based assembly algorithm computationally feasible. To further improve the contiguity and biological utility of the genome sequence, additional scaffolding methods utilizing independent genome and transcriptome assemblies were implemented. The combination of these strategies resulted in a draft genome sequence of 20.15 billion bases, with an N50 scaffold size of 66.9 kbp.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Plant Sci
                Front Plant Sci
                Front. Plant Sci.
                Frontiers in Plant Science
                Frontiers Media S.A.
                1664-462X
                23 June 2017
                2017
                : 8
                : 1075
                Affiliations
                Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Universidad de Málaga Málaga, Spain
                Author notes

                Edited by: Wanchai De-Eknamkul, Chulalongkorn University, Thailand

                Reviewed by: Nitima Suttipanta, Ubon Ratchathani University, Thailand; Takahiro Mori, ETH Zurich, Switzerland

                *Correspondence: Francisco R. Cantón, frcanton@ 123456uma.es

                This article was submitted to Plant Metabolism and Chemodiversity, a section of the journal Frontiers in Plant Science

                Article
                10.3389/fpls.2017.01075
                5481357
                3e28f425-1172-4676-ad27-eb94b8af304e
                Copyright © 2017 Van Kerckhoven, de la Torre, Cañas, Avila, Cantón and Cánovas.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 17 March 2017
                : 06 June 2017
                Page count
                Figures: 7, Tables: 0, Equations: 0, References: 47, Pages: 15, Words: 0
                Categories
                Plant Science
                Original Research

                Plant science & Botany
                conifers,maritime pine,asparagine,aspartate,nitrogen metabolism,proteolytic processing

                Comments

                Comment on this article