24
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      ROS and Brain Diseases: The Good, the Bad, and the Ugly

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The brain is a major metabolizer of oxygen and yet has relatively feeble protective antioxidant mechanisms. This paper reviews the Janus-faced properties of reactive oxygen species. It will describe the positive aspects of moderately induced ROS but it will also outline recent research findings concerning the impact of oxidative and nitrooxidative stress on neuronal structure and function in neuropsychiatric diseases, including major depression. A common denominator of all neuropsychiatric diseases including schizophrenia and ADHD is an increased inflammatory response of the brain caused either by an exposure to proinflammatory agents during development or an accumulation of degenerated neurons, oxidized proteins, glycated products, or lipid peroxidation in the adult brain. Therefore, modulation of the prooxidant-antioxidant balance provides a therapeutic option which can be used to improve neuroprotection in response to oxidative stress. We also discuss the neuroprotective role of the nuclear factor erythroid 2-related factor (Nrf2) in the aged brain in response to oxidative stressors and nanoparticle-mediated delivery of ROS-scavenging drugs. The antioxidant therapy is a novel therapeutic strategy. However, the available drugs have pleiotropic actions and are not fully characterized in the clinic. Additional clinical trials are needed to assess the risks and benefits of antioxidant therapies for neuropsychiatric disorders.

          Related collections

          Most cited references123

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Inflammatory mechanisms in ischemic stroke: therapeutic approaches

          Acute ischemic stroke is the third leading cause of death in industrialized countries and the most frequent cause of permanent disability in adults worldwide. Despite advances in the understanding of the pathophysiology of cerebral ischemia, therapeutic options remain limited. Only recombinant tissue-plasminogen activator (rt-PA) for thrombolysis is currently approved for use in the treatment of this devastating disease. However, its use is limited by its short therapeutic window (three hours), complications derived essentially from the risk of hemorrhage, and the potential damage from reperfusion/ischemic injury. Two important pathophysiological mechanisms involved during ischemic stroke are oxidative stress and inflammation. Brain tissue is not well equipped with antioxidant defenses, so reactive oxygen species and other free radicals/oxidants, released by inflammatory cells, threaten tissue viability in the vicinity of the ischemic core. This review will discuss the molecular aspects of oxidative stress and inflammation in ischemic stroke and potential therapeutic strategies that target neuroinflammation and the innate immune system. Currently, little is known about endogenous counterregulatory immune mechanisms. However, recent studies showing that regulatory T cells are major cerebroprotective immunomodulators after stroke suggest that targeting the endogenous adaptive immune response may offer novel promising neuroprotectant therapies.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Microglial activation and increased microglial density observed in the dorsolateral prefrontal cortex in autism.

            In the neurodevelopmental disorder autism, several neuroimmune abnormalities have been reported. However, it is unknown whether microglial somal volume or density are altered in the cortex and whether any alteration is associated with age or other potential covariates. Microglia in sections from the dorsolateral prefrontal cortex of nonmacrencephalic male cases with autism (n = 13) and control cases (n = 9) were visualized via ionized calcium binding adapter molecule 1 immunohistochemistry. In addition to a neuropathological assessment, microglial cell density was stereologically estimated via optical fractionator and average somal volume was quantified via isotropic nucleator. Microglia appeared markedly activated in 5 of 13 cases with autism, including 2 of 3 under age 6, and marginally activated in an additional 4 of 13 cases. Morphological alterations included somal enlargement, process retraction and thickening, and extension of filopodia from processes. Average microglial somal volume was significantly increased in white matter (p = .013), with a trend in gray matter (p = .098). Microglial cell density was increased in gray matter (p = .002). Seizure history did not influence any activation measure. The activation profile described represents a neuropathological alteration in a sizeable fraction of cases with autism. Given its early presence, microglial activation may play a central role in the pathogenesis of autism in a substantial proportion of patients. Alternatively, activation may represent a response of the innate neuroimmune system to synaptic, neuronal, or neuronal network disturbances, or reflect genetic and/or environmental abnormalities impacting multiple cellular populations. Copyright 2010 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Interleukin-1 beta and interleukin-6 are elevated in the cerebrospinal fluid of Alzheimer's and de novo Parkinson's disease patients.

              Interleukin-1 beta (IL-1 beta), interleukin-2 (IL-2), and interleukin-6 (IL-6) were measured in the cerebrospinal fluid (CSF) and plasma of 12 control subjects, 11 sporadic Alzheimer's disease (AD) and 22 de novo Parkinson's disease (PD) patients using high sensitivity enzyme-linked immunosorbent assays (ELISA). IL-1 beta and IL-6 contents were significantly elevated in the CSF of de novo PD and AD patients in comparison to the control group. In contrast, the plasma levels were not significantly affected. IL-2 contents in the CSF and plasma samples were unchanged in the three groups compared. Because the two cytokines IL-1 beta and IL-6 are known to play a key role in the interaction between the nervous and immune system, e.g. in the so-called acute phase response, our results support the involvement of immunological events in the complex process of neurodegeneration in AD and PD.
                Bookmark

                Author and article information

                Journal
                Oxid Med Cell Longev
                Oxid Med Cell Longev
                OXIMED
                Oxidative Medicine and Cellular Longevity
                Hindawi Publishing Corporation
                1942-0900
                1942-0994
                2013
                5 December 2013
                : 2013
                : 963520
                Affiliations
                1Department of Psychiatry, Rostock University Medical School, Gehlsheimer Straße 20, 18147 Rostock, Germany
                2Center of Clinical and Experimental Medicine, University of Medicine and Pharmacy, 200349 Craiova, Romania
                3Department of Biomedical Sciences, College of Veterinary Medicine, Ames, IA 50011, USA
                4Stanford University School of Medicine, MIPS, Canary Center at Stanford for Cancer Early Detection, CA 94304, USA
                Author notes

                Academic Editor: Cinzia Signorini

                Article
                10.1155/2013/963520
                3871919
                24381719
                3c76b3b4-87ee-4fdf-a0ac-3116cb8da49c
                Copyright © 2013 Aurel Popa-Wagner et al.

                This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 12 August 2013
                : 4 November 2013
                : 5 November 2013
                Categories
                Review Article

                Molecular medicine
                Molecular medicine

                Comments

                Comment on this article