6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Solventless and Metal-Free Synthesis of High-Molecular-Mass Polyaminoboranes from Diisopropylaminoborane and Primary Amines

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references29

          • Record: found
          • Abstract: found
          • Article: not found

          B-N compounds for chemical hydrogen storage.

          Hydrogen storage for transportation applications requires high volumetric and gravimetric storage capacity. B-N compounds are well suited as storage materials due to their light weight and propensity for bearing multiple protic (N-H) and hydridic (B-H) hydrogens. This critical review briefly covers the various methods of hydrogen storage, and then concentrates on chemical hydrogen storage using B-N compounds. The simplest B-N compound, ammonia borane (H3NBH3), which has a potential 19.6 wt% hydrogen storage capacity, will be emphasised (127 references).
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Efficient catalysis of ammonia borane dehydrogenation.

            In the presence of an iridium pincer complex, dehydrogenation of ammonia borane (H3NBH3) occurs rapidly at room temperature in tetrahydrofuran to generate 1.0 equivalent of H2 and [NH2BH2]5. A metal borohydride complex has been isolated as a dormant form of the catalyst which can be reactivated by reaction with H2.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Catalytic dehydrocoupling/dehydrogenation of N-methylamine-borane and ammonia-borane: synthesis and characterization of high molecular weight polyaminoboranes.

              The catalytic dehydrocoupling/dehydrogenation of N-methylamine-borane, MeNH(2)·BH(3) (7), to yield the soluble, high molecular weight poly(N-methylaminoborane) (8a), [MeNH-BH(2)](n) (M(W) > 20 000), has been achieved at 20 °C using Brookhart's Ir(III) pincer complex IrH(2)POCOP (5) (POCOP = [μ(3)-1,3-(OPtBu(2))(2)C(6)H(3)]) as a catalyst. The analogous reaction with ammonia-borane, NH(3)·BH(3) (4), gave an insoluble product, [NH(2)-BH(2)](n) (8d), but copolymerization with MeNH(2)·BH(3) gave soluble random copolymers, [MeNH-BH(2)](n)-r-[NH(2)-BH(2)](m) (8b and 8c). The structures of polyaminoborane 8a and copolymers 8b and 8c were further analyzed by ultrahigh resolution electrospray mass spectrometry (ESI-MS), and 8a, together with insoluble homopolymer 8d, was also characterized by (11)B and (1)H solid-state NMR, IR, and wide-angle X-ray scattering (WAXS). The data indicate that 8a-8c are essentially linear, high molecular weight materials and that the insoluble polyaminoborane 8d possesses a similar structure but is of lower molecular weight (ca. 20 repeat units), presumably due to premature precipitation during its formation. The yield and molecular weight of polymer 8a was found to be relatively robust toward the influence of different temperatures, solvents, and adduct concentrations, while higher catalyst loadings led to higher molecular weight materials. It was therefore unexpected that the polymerization of 7 using 5 was found to be a chain-growth rather than a step-growth process, where high molecular weights were already attained at about 40% conversion of 7. The results obtained are consistent with a two stage polymerization mechanism where, first, the Ir catalyst 5 dehydrogenates 7 to afford the monomer MeNH═BH(2) and, second, the same catalyst effects the subsequent polymerization of this species. A wide range of other catalysts based on Ru, Rh, and Pd were also found to be effective for the transformation of 7 to polyaminoborane 8a. For example, polyaminoborane 8a was even isolated from the initial stage of the dehydrocoupling/dehydrogenation of 7 with [Rh(μ-Cl)(1,5-cod)](2) (2) as the catalyst at 20 °C, a reaction reported to give the N,N,N-trimethyl borazine, [MeN-BH](3), under different conditions (dimethoxyethane, 45 °C). The ability to use a variety of catalysts to prepare polyaminoboranes suggests that the synthetic strategy should be applicable to a broad range of amine-borane precursors and is a promising development for this new class of inorganic polymers.
                Bookmark

                Author and article information

                Journal
                Angewandte Chemie International Edition
                Angew. Chem. Int. Ed.
                Wiley
                14337851
                February 05 2018
                February 05 2018
                January 16 2018
                : 57
                : 6
                : 1519-1522
                Affiliations
                [1 ]Institut des Sciences Chimiques de Rennes (ISCR), UMR-CNRS 6226; Université de Rennes 1; 263 avenue du Général Leclerc 35042 Rennes cedex France
                [2 ]ScanMAT-CRMPO, UMS-CNRS 2001; Université de Rennes 1; 263 avenue du Général Leclerc 35042 Rennes cedex France
                Article
                10.1002/anie.201710293
                3c5cdd88-31d8-4de8-8777-b0b347dc9bea
                © 2018

                http://doi.wiley.com/10.1002/tdm_license_1.1

                http://onlinelibrary.wiley.com/termsAndConditions#vor

                History

                Comments

                Comment on this article