16
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Transport and Application Layer DDoS Attacks Detection to IoT Devices by Using Machine Learning and Deep Learning Models

      , ,
      Sensors
      MDPI AG

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          From smart homes to industrial environments, the IoT is an ally to easing daily activities, where some of them are critical. More and more devices are connected to and through the Internet, which, given the large amount of different manufacturers, may lead to a lack of security standards. Denial of service attacks (DDoS, DoS) represent the most common and critical attack against and from these networks, and in the third quarter of 2021, there was an increase of 31% (compared to the same period of 2020) in the total number of advanced DDoS targeted attacks. This work uses the Bot-IoT dataset, addressing its class imbalance problem, to build a novel Intrusion Detection System based on Machine Learning and Deep Learning models. In order to evaluate how the records timestamps affect the predictions, we used three different feature sets for binary and multiclass classifications; this helped us avoid feature dependencies, as produced by the Argus flow data generator, whilst achieving an average accuracy >99%. Then, we conducted comprehensive experimentation, including time performance evaluation, matching and exceeding the results of the current state-of-the-art for identifying denial of service attacks, where the Decision Tree and Multi-layer Perceptron models were the best performing methods to identify DDoS and DoS attacks over IoT networks.

          Related collections

          Most cited references25

          • Record: found
          • Abstract: found
          • Article: not found

          SMOTE: Synthetic Minority Over-sampling Technique

          An approach to the construction of classifiers from imbalanced datasets is described. A dataset is imbalanced if the classification categories are not approximately equally represented. Often real-world data sets are predominately composed of ``normal'' examples with only a small percentage of ``abnormal'' or ``interesting'' examples. It is also the case that the cost of misclassifying an abnormal (interesting) example as a normal example is often much higher than the cost of the reverse error. Under-sampling of the majority (normal) class has been proposed as a good means of increasing the sensitivity of a classifier to the minority class. This paper shows that a combination of our method of over-sampling the minority (abnormal) class and under-sampling the majority (normal) class can achieve better classifier performance (in ROC space) than only under-sampling the majority class. This paper also shows that a combination of our method of over-sampling the minority class and under-sampling the majority class can achieve better classifier performance (in ROC space) than varying the loss ratios in Ripper or class priors in Naive Bayes. Our method of over-sampling the minority class involves creating synthetic minority class examples. Experiments are performed using C4.5, Ripper and a Naive Bayes classifier. The method is evaluated using the area under the Receiver Operating Characteristic curve (AUC) and the ROC convex hull strategy.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Scikit-learn: machine learning in python

              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Software-Defined Networking: A Comprehensive Survey

                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                SENSC9
                Sensors
                Sensors
                MDPI AG
                1424-8220
                May 2022
                April 28 2022
                : 22
                : 9
                : 3367
                Article
                10.3390/s22093367
                35591056
                3c5c0b17-4f8b-4b59-8ce1-9b19f2559b62
                © 2022

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article