49
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Regulation of the Src Family Kinases by Csk

      review-article
      International Journal of Biological Sciences
      Ivyspring International Publisher
      Csk, Src family, tyrosine kinases

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The non-receptor tyrosine kinase Csk serves as an indispensable negative regulator of the Src family tyrosine kinases (SFKs) by specifically phosphorylating the negative regulatory site of SFKs, thereby suppressing their oncogenic potential. Csk is primarily regulated through its SH2 domain, which is required for membrane translocation of Csk via binding to scaffold proteins such as Cbp/PAG1. The binding of scaffolds to the SH2 domain can also upregulate Csk kinase activity. These regulatory features have been elucidated by analyses of Csk structure at the atomic levels. Although Csk itself may not be mutated in human cancers, perturbation of the regulatory system consisting of Csk, Cbp/PAG1, or other scaffolds, and certain tyrosine phosphatases may explain the upregulation of SFKs frequently observed in human cancers. This review focuses on the molecular bases for the function, structure, and regulation of Csk as a unique regulatory tyrosine kinase for SFKs.

          Related collections

          Most cited references92

          • Record: found
          • Abstract: found
          • Article: not found

          Oncogenic kinase signalling.

          Protein-tyrosine kinases (PTKs) are important regulators of intracellular signal-transduction pathways mediating development and multicellular communication in metazoans. Their activity is normally tightly controlled and regulated. Perturbation of PTK signalling by mutations and other genetic alterations results in deregulated kinase activity and malignant transformation. The lipid kinase phosphoinositide 3-OH kinase (PI(3)K) and some of its downstream targets, such as the protein-serine/threonine kinases Akt and p70 S6 kinase (p70S6K), are crucial effectors in oncogenic PTK signalling. This review emphasizes how oncogenic conversion of protein kinases results from perturbation of the normal autoinhibitory constraints on kinase activity and provides an update on our knowledge about the role of deregulated PI(3)K/Akt and mammalian target of rapamycin/p70S6K signalling in human malignancies.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            A renaissance for SRC.

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Three-dimensional structure of the tyrosine kinase c-Src.

              The structure of a large fragment of the c-Src tyrosine kinase, comprising the regulatory and kinase domains and the carboxy-terminal tall, has been determined at 1.7 A resolution in a closed, inactive state. Interactions among domains, stabilized by binding of the phosphorylated tail to the SH2 domain, lock the molecule in a conformation that simultaneously disrupts the kinase active site and sequesters the binding surfaces of the SH2 and SH3 domains. The structure shows how appropriate cellular signals, or transforming mutations in v-Src, could break these interactions to produce an open, active kinase.
                Bookmark

                Author and article information

                Journal
                Int J Biol Sci
                Int. J. Biol. Sci
                ijbs
                International Journal of Biological Sciences
                Ivyspring International Publisher (Sydney )
                1449-2288
                2012
                1 November 2012
                : 8
                : 10
                : 1385-1397
                Affiliations
                Department of Oncogene Research, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamada-oka, Suita, Osaka 565-0871, JAPAN.
                Author notes
                ✉ Corresponding author: TEL: 81-6-6879-8297 FAX: 81-6-6879-8298, E-mail: okadam@ 123456biken.osaka-u.ac.jp .

                Competing Interests: The author has declared that no competing interest exists.

                Article
                ijbsv08p1385
                10.7150/ijbs.5141
                3492796
                23139636
                3c1fc1c1-ab16-411e-aa45-d07336cc0db1
                © Ivyspring International Publisher. This is an open-access article distributed under the terms of the Creative Commons License (http://creativecommons.org/licenses/by-nc-nd/3.0/). Reproduction is permitted for personal, noncommercial use, provided that the article is in whole, unmodified, and properly cited.
                History
                : 31 August 2012
                : 1 October 2012
                Categories
                Review

                Life sciences
                csk,tyrosine kinases,src family
                Life sciences
                csk, tyrosine kinases, src family

                Comments

                Comment on this article