9
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Effects of SARS-CoV-2 variants on vaccine efficacy and response strategies

      review-article
      , , , , , ,
      Expert Review of Vaccines
      Taylor & Francis
      SARS-cov-2, variant, vaccine, protective efficacy, neutralization

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          ABSTRACT

          Introduction

          As the global severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic continues to spread, several variants have emerged. Variants B.1.1.7 and B.1.351 have attracted significant attention owing to their widespread transmission and possible immune evasion. A total of 19 SARS-CoV-2 vaccines based on original strains have entered clinical studies, including nine vaccines that have obtained emergency use or conditional marketing authorizations. However, newly emerging variants may affect their protective efficacy. Decreased efficacy of the Novartis, Johnson & Johnson, and AstraZeneca vaccines against B.1.351 has been reported. The spread of variants creates a tremendous challenge for the prevention and control of the SARS-CoV-2 pandemic via vaccination. Several response strategies, including accelerating massive rollouts of current vaccines, increasing vaccine immunogenicity by increasing vaccination doses, and accelerating next-generation vaccines against variants, have been suggested.

          Areas covered

          SARS-CoV-2 vaccine efficacy against variants and response strategies for emerging variants.

          Expert opinion

          Current SARS-CoV-2 vaccines authorized for emergency use or under clinical trials have shown certain advantages in providing adequate protection against new variants. We analyzed the effects of reported variants on neutralizing antibodies and the protective efficacy of different vaccines and propose strategies for applying current vaccines against variants and developing next-generation vaccines.

          Related collections

          Most cited references47

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          A pneumonia outbreak associated with a new coronavirus of probable bat origin

          Since the outbreak of severe acute respiratory syndrome (SARS) 18 years ago, a large number of SARS-related coronaviruses (SARSr-CoVs) have been discovered in their natural reservoir host, bats 1–4 . Previous studies have shown that some bat SARSr-CoVs have the potential to infect humans 5–7 . Here we report the identification and characterization of a new coronavirus (2019-nCoV), which caused an epidemic of acute respiratory syndrome in humans in Wuhan, China. The epidemic, which started on 12 December 2019, had caused 2,794 laboratory-confirmed infections including 80 deaths by 26 January 2020. Full-length genome sequences were obtained from five patients at an early stage of the outbreak. The sequences are almost identical and share 79.6% sequence identity to SARS-CoV. Furthermore, we show that 2019-nCoV is 96% identical at the whole-genome level to a bat coronavirus. Pairwise protein sequence analysis of seven conserved non-structural proteins domains show that this virus belongs to the species of SARSr-CoV. In addition, 2019-nCoV virus isolated from the bronchoalveolar lavage fluid of a critically ill patient could be neutralized by sera from several patients. Notably, we confirmed that 2019-nCoV uses the same cell entry receptor—angiotensin converting enzyme II (ACE2)—as SARS-CoV.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            A new coronavirus associated with human respiratory disease in China

            Emerging infectious diseases, such as severe acute respiratory syndrome (SARS) and Zika virus disease, present a major threat to public health 1–3 . Despite intense research efforts, how, when and where new diseases appear are still a source of considerable uncertainty. A severe respiratory disease was recently reported in Wuhan, Hubei province, China. As of 25 January 2020, at least 1,975 cases had been reported since the first patient was hospitalized on 12 December 2019. Epidemiological investigations have suggested that the outbreak was associated with a seafood market in Wuhan. Here we study a single patient who was a worker at the market and who was admitted to the Central Hospital of Wuhan on 26 December 2019 while experiencing a severe respiratory syndrome that included fever, dizziness and a cough. Metagenomic RNA sequencing 4 of a sample of bronchoalveolar lavage fluid from the patient identified a new RNA virus strain from the family Coronaviridae, which is designated here ‘WH-Human 1’ coronavirus (and has also been referred to as ‘2019-nCoV’). Phylogenetic analysis of the complete viral genome (29,903 nucleotides) revealed that the virus was most closely related (89.1% nucleotide similarity) to a group of SARS-like coronaviruses (genus Betacoronavirus, subgenus Sarbecovirus) that had previously been found in bats in China 5 . This outbreak highlights the ongoing ability of viral spill-over from animals to cause severe disease in humans.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Tracking changes in SARS-CoV-2 Spike: evidence that D614G increases infectivity of the COVID-19 virus

              Summary A SARS-CoV-2 variant carrying the Spike protein amino acid change D614G has become the most prevalent form in the global pandemic. Dynamic tracking of variant frequencies revealed a recurrent pattern of G614 increase at multiple geographic levels: national, regional and municipal. The shift occurred even in local epidemics where the original D614 form was well established prior to the introduction of the G614 variant. The consistency of this pattern was highly statistically significant, suggesting that the G614 variant may have a fitness advantage. We found that the G614 variant grows to higher titer as pseudotyped virions. In infected individuals G614 is associated with lower RT-PCR cycle thresholds, suggestive of higher upper respiratory tract viral loads, although not with increased disease severity. These findings illuminate changes important for a mechanistic understanding of the virus, and support continuing surveillance of Spike mutations to aid in the development of immunological interventions.
                Bookmark

                Author and article information

                Journal
                Expert Rev Vaccines
                Expert Rev Vaccines
                Expert Review of Vaccines
                Taylor & Francis
                1476-0584
                1744-8395
                14 April 2021
                2021
                : 1-9
                Affiliations
                [0001]Institute of Biological Products, Division of Hepatitis and Enterovirus Vaccines, National Institutes for Food and Drug Control; , Beijing, China
                Author notes
                CONTACT Zhenglun Liang lzhenglun@ 123456126.com
                Miao Xu xumiaobj@ 123456126.com Huatuo Road No.31, Daxing District; , Beijing, 102629
                [*]

                These authors contributed equally;

                Article
                1903879
                10.1080/14760584.2021.1903879
                8054487
                33851875
                3c1ce484-f9f8-408f-9ab5-101ba2316d07
                © 2021 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives License ( http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited, and is not altered, transformed, or built upon in any way.

                This article is made available via the PMC Open Access Subset for unrestricted re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for the duration of the COVID-19 pandemic or until permissions are revoked in writing. Upon expiration of these permissions, PMC is granted a perpetual license to make this article available via PMC and Europe PMC, consistent with existing copyright protections.

                History
                Page count
                Figures: 1, Tables: 2, References: 73, Pages: 9
                Categories
                Review
                Review

                sars-cov-2,variant,vaccine,protective efficacy,neutralization

                Comments

                Comment on this article