30
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Local energy decomposition analysis of hydrogen-bonded dimers within a domain-based pair natural orbital coupled cluster study

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The local energy decomposition (LED) analysis allows for a decomposition of the accurate domain-based local pair natural orbital CCSD(T) [DLPNO-CCSD(T)] energy into physically meaningful contributions including geometric and electronic preparation, electrostatic interaction, interfragment exchange, dynamic charge polarization, and London dispersion terms. Herein, this technique is employed in the study of hydrogen-bonding interactions in a series of conformers of water and hydrogen fluoride dimers. Initially, DLPNO-CCSD(T) dissociation energies for the most stable conformers are computed and compared with available experimental data. Afterwards, the decay of the LED terms with the intermolecular distance ( r) is discussed and results are compared with the ones obtained from the popular symmetry adapted perturbation theory (SAPT). It is found that, as expected, electrostatic contributions slowly decay for increasing r and dominate the interaction energies in the long range. London dispersion contributions decay as expected, as r −6. They significantly affect the depths of the potential wells. The interfragment exchange provides a further stabilizing contribution that decays exponentially with the intermolecular distance. This information is used to rationalize the trend of stability of various conformers of the water and hydrogen fluoride dimers.

          Related collections

          Most cited references27

          • Record: found
          • Abstract: found
          • Article: not found

          Natural triple excitations in local coupled cluster calculations with pair natural orbitals.

          In this work, the extension of the previously developed domain based local pair-natural orbital (DLPNO) based singles- and doubles coupled cluster (DLPNO-CCSD) method to perturbatively include connected triple excitations is reported. The development is based on the concept of triples-natural orbitals that span the joint space of the three pair natural orbital (PNO) spaces of the three electron pairs that are involved in the calculation of a given triple-excitation contribution. The truncation error is very smooth and can be significantly reduced through extrapolation to the zero threshold. However, the extrapolation procedure does not improve relative energies. The overall computational effort of the method is asymptotically linear with the system size O(N). Actual linear scaling has been confirmed in test calculations on alkane chains. The accuracy of the DLPNO-CCSD(T) approximation relative to semicanonical CCSD(T0) is comparable to the previously developed DLPNO-CCSD method relative to canonical CCSD. Relative energies are predicted with an average error of approximately 0.5 kcal∕mol for a challenging test set of medium sized organic molecules. The triples correction typically adds 30%-50% to the overall computation time. Thus, very large systems can be treated on the basis of the current implementation. In addition to the linear C150H302 (452 atoms, >8800 basis functions) we demonstrate the first CCSD(T) level calculation on an entire protein, Crambin with 644 atoms, and more than 6400 basis functions.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Molecular Orbital Studies of Hydrogen Bonds. III. C=O···H–O Hydrogen Bond in H2CO···H2O and H2CO···2H2O

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Exploring the Accuracy Limits of Local Pair Natural Orbital Coupled-Cluster Theory.

              The domain based local pair natural orbital coupled cluster method with single-, double-, and perturbative triple excitations (DLPNO–CCSD(T)) is an efficient quantum chemical method that allows for coupled cluster calculations on molecules with hundreds of atoms. Because coupled-cluster theory is the method of choice if high-accuracy is needed, DLPNO–CCSD(T) is very promising for large-scale chemical application. However, the various approximations that have to be introduced in order to reach near linear scaling also introduce limited deviations from the canonical results. In the present work, we investigate how far the accuracy of the DLPNO–CCSD(T) method can be pushed for chemical applications. We also address the question at which additional computational cost improvements, relative to the previously established default scheme, come. To answer these questions, a series of benchmark sets covering a broad range of quantum chemical applications including reaction energies, hydrogen bonds, and other noncovalent interactions, conformer energies, and a prototype organometallic problem were selected. An accuracy of 1 kcal/mol or better can readily be obtained for all data sets using the default truncation scheme, which corresponds to the stated goal of the original implementation. Tightening of the three thresholds that control DLPNO leads to mean absolute errors and standard deviations from the canonical results of less than 0.25 kcal/mol (<1 kJ/mol). The price one has then to pay is an increased computational time by a factor close to 3. The applicability of the method is shown to be independent of the nature of the reaction. On the basis of the careful analysis of the results, three different sets of truncation thresholds (termed “LoosePNO”, “NormalPNO”, and “TightPNO”) have been chosen for “black box” use of DLPNO–CCSD(T). This will allow users of the method to optimally balance performance and accuracy.
                Bookmark

                Author and article information

                Contributors
                Role: Guest Editor
                Journal
                Beilstein J Org Chem
                Beilstein J Org Chem
                Beilstein Journal of Organic Chemistry
                Beilstein-Institut (Trakehner Str. 7-9, 60487 Frankfurt am Main, Germany )
                1860-5397
                2018
                25 April 2018
                : 14
                : 919-929
                Affiliations
                [1 ]Max Planck Institute for Chemical Energy Conversion, Stifstrasse 34-36, D-45470 Mülheim an der Ruhr, Germany
                [2 ]Max Planck Institute for Coal Research, Kaiser-Wilhelm-Platz 1, D-45470 Mülheim an der Ruhr, Germany
                Author information
                http://orcid.org/0000-0001-8818-9925
                http://orcid.org/0000-0003-4691-0547
                http://orcid.org/0000-0003-4849-1323
                Article
                10.3762/bjoc.14.79
                5942370
                29765473
                3a67147f-f2aa-4f3e-a4cf-6a1af83e0df2
                Copyright © 2018, Altun et al.; licensee Beilstein-Institut.

                This is an Open Access article under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                The license is subject to the Beilstein Journal of Organic Chemistry terms and conditions: (https://www.beilstein-journals.org/bjoc)

                History
                : 19 January 2018
                : 6 April 2018
                Categories
                Full Research Paper
                Chemistry
                Organic Chemistry

                Organic & Biomolecular chemistry
                dlpno-ccsd(t),hydrogen-bond interaction,interaction energy,local energy decomposition,london dispersion

                Comments

                Comment on this article