687
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Genome-Wide Screen in Saccharomyces cerevisiae Identifies Vacuolar Protein Sorting, Autophagy, Biosynthetic, and tRNA Methylation Genes Involved in Life Span Regulation

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The study of the chronological life span of Saccharomyces cerevisiae, which measures the survival of populations of non-dividing yeast, has resulted in the identification of homologous genes and pathways that promote aging in organisms ranging from yeast to mammals. Using a competitive genome-wide approach, we performed a screen of a complete set of approximately 4,800 viable deletion mutants to identify genes that either increase or decrease chronological life span. Half of the putative short-/long-lived mutants retested from the primary screen were confirmed, demonstrating the utility of our approach. Deletion of genes involved in vacuolar protein sorting, autophagy, and mitochondrial function shortened life span, confirming that respiration and degradation processes are essential for long-term survival. Among the genes whose deletion significantly extended life span are ACB1, CKA2, and TRM9, implicated in fatty acid transport and biosynthesis, cell signaling, and tRNA methylation, respectively. Deletion of these genes conferred heat-shock resistance, supporting the link between life span extension and cellular protection observed in several model organisms. The high degree of conservation of these novel yeast longevity determinants in other species raises the possibility that their role in senescence might be conserved.

          Author Summary

          Model organisms have been instrumental in uncovering genes that function to control life span and to identify the molecular pathways whose role in aging is conserved between the evolutionarily distant unicellular yeast and mice. Because yeast are particularly amenable to genetics and genomics studies, they have been used widely as model system for aging research. Here we have exploited a powerful genomic tool, the yeast deletion collection, to screen a pool of non-essential deletion mutants (∼4,800) to identify novel genes involved in the regulation of yeast chronological life span. Our results show that normal life span depends on functional mitochondria and on the cell's ability to degrade cellular components and proteins by autophagy. Our data indicate that a cell signaling protein, CK2, and diverse cellular processes such as fatty acid metabolism, amino acid biosynthesis, and tRNA modification modulate yeast chronological aging. The high level of conservation of the novel life span regulatory genes uncovered in this study suggests that their role in longevity regulation might be conserved in higher eukaryotes.

          Related collections

          Most cited references52

          • Record: found
          • Abstract: found
          • Article: not found

          Regulation of lifespan in Drosophila by modulation of genes in the TOR signaling pathway.

          In many species, reducing nutrient intake without causing malnutrition extends lifespan. Like DR (dietary restriction), modulation of genes in the insulin-signaling pathway, known to alter nutrient sensing, has been shown to extend lifespan in various species. In Drosophila, the target of rapamycin (TOR) and the insulin pathways have emerged as major regulators of growth and size. Hence we examined the role of TOR pathway genes in regulating lifespan by using Drosophila. We show that inhibition of TOR signaling pathway by alteration of the expression of genes in this nutrient-sensing pathway, which is conserved from yeast to human, extends lifespan in a manner that may overlap with known effects of dietary restriction on longevity. In Drosophila, TSC1 and TSC2 (tuberous sclerosis complex genes 1 and 2) act together to inhibit TOR (target of rapamycin), which mediates a signaling pathway that couples amino acid availability to S6 kinase, translation initiation, and growth. We find that overexpression of dTsc1, dTsc2, or dominant-negative forms of dTOR or dS6K all cause lifespan extension. Modulation of expression in the fat is sufficient for the lifespan-extension effects. The lifespan extensions are dependent on nutritional condition, suggesting a possible link between the TOR pathway and dietary restriction.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Lifespan extension by conditions that inhibit translation in Caenorhabditis elegans.

            Many conditions that shift cells from states of nutrient utilization and growth to states of cell maintenance extend lifespan. We have carried out a systematic lifespan analysis of conditions that inhibit protein synthesis. We find that reducing the levels of ribosomal proteins, ribosomal-protein S6 kinase or translation-initiation factors increases the lifespan of Caenorhabditis elegans. These perturbations, as well as inhibition of the nutrient sensor target of rapamycin (TOR), which is known to increase lifespan, all increase thermal-stress resistance. Thus inhibiting translation may extend lifespan by shifting cells to physiological states that favor maintenance and repair. Interestingly, different types of translation inhibition lead to one of two mutually exclusive outputs, one that increases lifespan and stress resistance through the transcription factor DAF-16/FOXO, and one that increases lifespan and stress resistance independently of DAF-16. Our findings link TOR, but not sir-2.1, to the longevity response induced by dietary restriction (DR) in C. elegans, and they suggest that neither TOR inhibition nor DR extends lifespan simply by reducing protein synthesis.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Genetics: influence of TOR kinase on lifespan in C. elegans.

                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Genet
                plos
                plosgen
                PLoS Genetics
                Public Library of Science (San Francisco, USA )
                1553-7390
                1553-7404
                July 2010
                July 2010
                15 July 2010
                : 6
                : 7
                : e1001024
                Affiliations
                [1 ]Andrus Gerontology Center and Department of Biological Sciences, University of Southern California, Los Angeles, California, United States of America
                [2 ]Laboratoire de Biologie Moléculaire de la Cellule, Centre National de la Recherche Scientifique, Ecole Normale Supérieure de Lyon, Université de Lyon, Lyon, France
                [3 ]Department of Genetics, Stanford University, Palo Alto, California, United States of America
                [4 ]Department of Pharmaceutical Sciences, University of Toronto, Toronto, Ontario, Canada
                [5 ]Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
                Stanford University Medical Center, United States of America
                Author notes

                Conceived and designed the experiments: PF SH GG CN VDL. Performed the experiments: PF SH MS AG MW. Analyzed the data: PF SH CN VDL. Contributed reagents/materials/analysis tools: GG CN VDL. Wrote the paper: PF VDL.

                Article
                09-PLGE-RA-1620R3
                10.1371/journal.pgen.1001024
                2904796
                20657825
                3a1bebbf-20ac-4af1-a638-93b52ecbb488
                Fabrizio et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 14 September 2009
                : 14 June 2010
                Page count
                Pages: 14
                Categories
                Research Article
                Genetics and Genomics

                Genetics
                Genetics

                Comments

                Comment on this article