13
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Alterations in intestinal Archaea composition in pediatric patients with Crohn’s disease based on next-generation sequencing – a pilot study

      research-article
      a , a , b , c , d , a
      Gut Microbes
      Taylor & Francis
      Archaea, archaeome, Crohn’s disease, NGS, inflammatory bowel disease; molecular microbiology

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          ABSTRACT

          Intestinal dysbiosis can lead to the induction of systemic immune-mediated inflammatory diseases, such as Crohn’s disease Although archaea are part of the commensal microbiota, they are still one of the least studied microorganisms. The aim of our study was the standardization of the optimal conditions and primers for sequencing of the gut archaeome using Next Generation Sequencing, and evaluation of the differences between the composition of archaea in patients and healthy volunteers, as well as analysis of the changes that occur in the archaeome of patients depending on disease activity. Newly diagnosed patients were characterized by similar archeal profiles at every taxonomic level as in healthy individuals (the dominance of Methanobacteria at the class level, and Methanobrevibacter at the genus level). In turn, in patients previously diagnosed with Crohn’s disease (both in active and remission phase), an increased prevalence of Thermoplasmata, Thermoprotei, Halobacteria (at the class level), and Halococcus, Methanospaera or Picrophilus (at the genus level) were observed. Furthermore, we have found a significant correlation between the patient’s parameters and the individual class or species of Archaea. Our study confirms changes in archaeal composition in pediatric patients with Crohn’s disease, however, only in long-standing disease. At the beginning of the disease, the archeal profile is similar to that of healthy people. However, in the chronic form of the disease, significant differences in the composition of archaeome begin to appear. It seems that some archaea may be a good indicator of the chronicity and activity of Crohn’s disease.

          Related collections

          Most cited references69

          • Record: found
          • Abstract: found
          • Article: not found

          Diversity of the human intestinal microbial flora.

          The human endogenous intestinal microflora is an essential "organ" in providing nourishment, regulating epithelial development, and instructing innate immunity; yet, surprisingly, basic features remain poorly described. We examined 13,355 prokaryotic ribosomal RNA gene sequences from multiple colonic mucosal sites and feces of healthy subjects to improve our understanding of gut microbial diversity. A majority of the bacterial sequences corresponded to uncultivated species and novel microorganisms. We discovered significant intersubject variability and differences between stool and mucosa community composition. Characterization of this immensely diverse ecosystem is the first step in elucidating its role in health and disease.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Interaction between microbiota and immunity in health and disease

            The interplay between the commensal microbiota and the mammalian immune system development and function includes multifold interactions in homeostasis and disease. The microbiome plays critical roles in the training and development of major components of the host’s innate and adaptive immune system, while the immune system orchestrates the maintenance of key features of host-microbe symbiosis. In a genetically susceptible host, imbalances in microbiota-immunity interactions under defined environmental contexts are believed to contribute to the pathogenesis of a multitude of immune-mediated disorders. Here, we review features of microbiome-immunity crosstalk and their roles in health and disease, while providing examples of molecular mechanisms orchestrating these interactions in the intestine and extra-intestinal organs. We highlight aspects of the current knowledge, challenges and limitations in achieving causal understanding of host immune-microbiome interactions, as well as their impact on immune-mediated diseases, and discuss how these insights may translate towards future development of microbiome-targeted therapeutic interventions.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Introduction to the human gut microbiota

              The human gastrointestinal (GI) tract harbours a complex and dynamic population of microorganisms, the gut microbiota, which exert a marked influence on the host during homeostasis and disease. Multiple factors contribute to the establishment of the human gut microbiota during infancy. Diet is considered as one of the main drivers in shaping the gut microbiota across the life time. Intestinal bacteria play a crucial role in maintaining immune and metabolic homeostasis and protecting against pathogens. Altered gut bacterial composition (dysbiosis) has been associated with the pathogenesis of many inflammatory diseases and infections. The interpretation of these studies relies on a better understanding of inter-individual variations, heterogeneity of bacterial communities along and across the GI tract, functional redundancy and the need to distinguish cause from effect in states of dysbiosis. This review summarises our current understanding of the development and composition of the human GI microbiota, and its impact on gut integrity and host health, underlying the need for mechanistic studies focusing on host–microbe interactions.
                Bookmark

                Author and article information

                Journal
                Gut Microbes
                Gut Microbes
                Gut Microbes
                Taylor & Francis
                1949-0976
                1949-0984
                13 November 2023
                2023
                13 November 2023
                : 15
                : 2
                : 2276806
                Affiliations
                [a ]Department of Molecular Medical Microbiology, Division of Microbiology, Jagiellonian University Medical College; , Krakow, Poland
                [b ]Department of Pharmaceutical Microbiology, Jagiellonian University Medical College; , Krakow, Poland
                [c ]Jagiellonian University Hospital in Krakow; , Krakow, Poland
                [d ]Department of Pediatrics, Gastroenterology and Nutrition,Jagiellonian University Medical College; , Krakow, Poland
                Author notes
                CONTACT D. Salamon dominika.salamon@ 123456uj.edu.pl Department of Molecular Medical Microbiology, Division of Microbiology, Faculty of Medicine, Jagiellonian University Medical College; , 18 Czysta Str, Krakow 31-121, Poland
                Author information
                https://orcid.org/0000-0002-5974-5520
                Article
                2276806
                10.1080/19490976.2023.2276806
                10653639
                37955638
                39bedb3c-0391-40c5-9640-e081e1365eba
                © 2023 The Author(s). Published with license by Taylor & Francis Group, LLC.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The terms on which this article has been published allow the posting of the Accepted Manuscript in a repository by the author(s) or with their consent.

                History
                Page count
                Figures: 6, Tables: 4, References: 74, Pages: 1
                Categories
                Research Article
                Research Paper

                Microbiology & Virology
                archaea,archaeome,crohn’s disease,ngs,inflammatory bowel disease; molecular microbiology

                Comments

                Comment on this article