5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Lower baseline autoantibody levels are associated with immune-related adverse events from immune checkpoint inhibition

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Introduction

          Immune checkpoint inhibitors (ICI) are a novel cancer therapeutic that have been successful in treating advanced malignancies; however, they also cause immune-related adverse events (irAE). Given that some irAE are clinically similar to traditional autoimmune diseases, autoantibodies have been suggested as possible biomarkers of irAE. However, there are very little data on autoantibody investigation prior to ICI. Our aim was to determine if specific baseline autoantibodies were associated with irAE and see if changes in autoantibody concentration corresponded with irAE development.

          Methods

          This study used data from an oncologic clinical trial of adaptive dosing combination ICI therapy in patients with advanced melanoma. Plasma was collected at baseline and 6 weeks after ICI initiation and tested in a microarray of 120 autoantigens commonly associated with autoimmune disease, as well as antinuclear antibody (ANA), rheumatoid factor (RF), and anti-cyclic citrullinated peptide antibody (anti-CCP). Autoantibody concentrations were compared between patients experiencing an organ-specific event versus not. Heatmaps, volcano plots and hierarchical clustering were used to determine autoantibody concentration differences among irAE patient clusters as defined by signal intensity of autoantibodies. Kaplan-Meier curves were created and a log-rank test was performed to assess differences in survival.

          Results

          The microarray analysis demonstrated that patients who experienced specific irAE had fewer differentially expressed autoantibodies at baseline than those that did not have those specific irAE, and a greater fold change (FC) in antibody concentration from baseline to 6 weeks corresponded with specific irAE development. However, no autoantibodies were identified as being predictive of specific events. Time to first irAE was less than 6 weeks in 69% of patients, and these patients had less autoantibodies at baseline. Considering ANA, RF and CCP autoantibodies, there were no significant differences between the seropositive and seronegative patients in irAE development, severity, timing or survival.

          Conclusion

          Patients with low autoantibody concentrations at baseline as well as a greater FC in autoantibody concentration over 6 weeks developed more distinct organ-specific irAE. This may suggest differences in the balance of cellular immunity and humoral pathways that are relevant in the pathogenesis of irAE, though further investigation is needed.

          Related collections

          Most cited references33

          • Record: found
          • Abstract: found
          • Article: not found

          New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1).

          Assessment of the change in tumour burden is an important feature of the clinical evaluation of cancer therapeutics: both tumour shrinkage (objective response) and disease progression are useful endpoints in clinical trials. Since RECIST was published in 2000, many investigators, cooperative groups, industry and government authorities have adopted these criteria in the assessment of treatment outcomes. However, a number of questions and issues have arisen which have led to the development of a revised RECIST guideline (version 1.1). Evidence for changes, summarised in separate papers in this special issue, has come from assessment of a large data warehouse (>6500 patients), simulation studies and literature reviews. HIGHLIGHTS OF REVISED RECIST 1.1: Major changes include: Number of lesions to be assessed: based on evidence from numerous trial databases merged into a data warehouse for analysis purposes, the number of lesions required to assess tumour burden for response determination has been reduced from a maximum of 10 to a maximum of five total (and from five to two per organ, maximum). Assessment of pathological lymph nodes is now incorporated: nodes with a short axis of 15 mm are considered measurable and assessable as target lesions. The short axis measurement should be included in the sum of lesions in calculation of tumour response. Nodes that shrink to <10mm short axis are considered normal. Confirmation of response is required for trials with response primary endpoint but is no longer required in randomised studies since the control arm serves as appropriate means of interpretation of data. Disease progression is clarified in several aspects: in addition to the previous definition of progression in target disease of 20% increase in sum, a 5mm absolute increase is now required as well to guard against over calling PD when the total sum is very small. Furthermore, there is guidance offered on what constitutes 'unequivocal progression' of non-measurable/non-target disease, a source of confusion in the original RECIST guideline. Finally, a section on detection of new lesions, including the interpretation of FDG-PET scan assessment is included. Imaging guidance: the revised RECIST includes a new imaging appendix with updated recommendations on the optimal anatomical assessment of lesions. A key question considered by the RECIST Working Group in developing RECIST 1.1 was whether it was appropriate to move from anatomic unidimensional assessment of tumour burden to either volumetric anatomical assessment or to functional assessment with PET or MRI. It was concluded that, at present, there is not sufficient standardisation or evidence to abandon anatomical assessment of tumour burden. The only exception to this is in the use of FDG-PET imaging as an adjunct to determination of progression. As is detailed in the final paper in this special issue, the use of these promising newer approaches requires appropriate clinical validation studies.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The blockade of immune checkpoints in cancer immunotherapy.

            Among the most promising approaches to activating therapeutic antitumour immunity is the blockade of immune checkpoints. Immune checkpoints refer to a plethora of inhibitory pathways hardwired into the immune system that are crucial for maintaining self-tolerance and modulating the duration and amplitude of physiological immune responses in peripheral tissues in order to minimize collateral tissue damage. It is now clear that tumours co-opt certain immune-checkpoint pathways as a major mechanism of immune resistance, particularly against T cells that are specific for tumour antigens. Because many of the immune checkpoints are initiated by ligand-receptor interactions, they can be readily blocked by antibodies or modulated by recombinant forms of ligands or receptors. Cytotoxic T-lymphocyte-associated antigen 4 (CTLA4) antibodies were the first of this class of immunotherapeutics to achieve US Food and Drug Administration (FDA) approval. Preliminary clinical findings with blockers of additional immune-checkpoint proteins, such as programmed cell death protein 1 (PD1), indicate broad and diverse opportunities to enhance antitumour immunity with the potential to produce durable clinical responses.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Combined Nivolumab and Ipilimumab or Monotherapy in Untreated Melanoma

              New England Journal of Medicine, 373(1), 23-34
                Bookmark

                Author and article information

                Journal
                J Immunother Cancer
                J Immunother Cancer
                jitc
                jitc
                Journal for Immunotherapy of Cancer
                BMJ Publishing Group (BMA House, Tavistock Square, London, WC1H 9JR )
                2051-1426
                2022
                28 January 2022
                : 10
                : 1
                : e004008
                Affiliations
                [1 ]Hospital for Special Surgery/Weill Cornell Medical College, Department of Medicine, Division of Rheumatology , New York, NY, USA
                [2 ]Melanoma & Immunotherapeutics Service, Department of Medicine, Memorial Sloan-Kettering Cancer Center , New York, NY, USA
                [3 ]Department of Immunology, Microarray and Immune Phenotyping Core Facility, University of Texas Southwestern Medical Center , Dallas, TX, USA
                [4 ]Hospital for Special Surgery, Department of Medicine, Division of Rheumatology , New York, New York, USA
                Author notes
                [Correspondence to ] Dr Nilasha Ghosh; ghoshn@ 123456hss.edu
                Author information
                http://orcid.org/0000-0002-8799-9309
                http://orcid.org/0000-0002-3367-7961
                Article
                jitc-2021-004008
                10.1136/jitc-2021-004008
                8804686
                35091456
                398d8325-2f89-4f8c-a5cb-3c8635839c3e
                © Author(s) (or their employer(s)) 2022. Re-use permitted under CC BY. Published by BMJ.

                This is an open access article distributed in accordance with the Creative Commons Attribution 4.0 Unported (CC BY 4.0) license, which permits others to copy, redistribute, remix, transform and build upon this work for any purpose, provided the original work is properly cited, a link to the licence is given, and indication of whether changes were made. See https://creativecommons.org/licenses/by/4.0/.

                History
                : 01 January 2022
                Funding
                Funded by: NIH/NCATS;
                Award ID: UL1-TR-002384
                Categories
                Clinical/Translational Cancer Immunotherapy
                1506
                2435
                Original research
                Custom metadata
                unlocked

                immunotherapy,immunity,humoral,autoimmunity,melanoma,antibody formation

                Comments

                Comment on this article