8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Identification and characterization of a periplasmic trilactone esterase, Cee, revealed unique features of ferric enterobactin acquisition in Campylobacter.

      Molecular Microbiology
      Campylobacter jejuni, enzymology, genetics, metabolism, Chromatography, High Pressure Liquid, Chromatography, Thin Layer, Enterobactin, Esterases, isolation & purification, Genome, Bacterial, Hydrolysis, Kinetics, Lactones, Models, Biological, Molecular Sequence Data, Periplasmic Proteins, Sequence Analysis, DNA

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Ferric enterobactin (FeEnt) acquisition is a highly efficient and conserved iron scavenging system in Gram-negative bacteria. Recently, we have characterized two FeEnt receptors (CfrA and CfrB) in Campylobacter jejuni and C. coli, the enteric human pathogens that do not produce any siderophores. In this study, whole-genome sequencing and comparative genomic analysis identified a unique Ent trilactone esterase Cee (Cj1376) in C. jejuni. Genomic analysis and biochemical assay strongly suggested that Cee is the sole trilactone esterase in C. jejuni. Thin-layer chromatography and HPLC analyses showed high efficiency of the purified Cee to hydrolyse Ent. Three Cee homologues previously characterized from other bacteria (IroE, IroD and Fes) were also purified and analysed together with Cee, indicating that Cee, Fes and IroD displayed similar hydrolysis dynamics for both apo and ferric forms of Ent while IroE catalysed Ent inefficiently. Unlike cytoplasmic Fes and IroD, Cee is localized in the periplasm as demonstrated by immunoblotting using Cee-specific antibodies. Genetic manipulation of diverse Campylobacter strains demonstrated that Cee is not only essential for CfrB-dependent FeEnt acquisition but also involved in CfrA-dependent pathway. Together, this study identified and characterized a novel periplasmic trilactone esterase and suggested a new model of FeEnt acquisition in Campylobacter. © 2012 Blackwell Publishing Ltd.

          Related collections

          Author and article information

          Comments

          Comment on this article