7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Safety Evaluation of Bifidobacterium breve IDCC4401 Isolated from Infant Feces for Use as a Commercial Probiotic

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Previously, our research group isolated Bifidobacterium breve IDCC4401 from infant feces as a potential probiotic. For this study, we evaluated the safety of B. breve IDCC4401 using genomic and phenotypic analyses. Whole genome sequencing was performed to identify genomic characteristics and investigate the potential presence of genes encoding virulence, antibiotic resistance, and mobile genetic elements. Phenotypic analyses including antibiotic susceptibility, enzyme activity, production of biogenic amines (BAs), and proportion of D-/L-lactate were evaluated using E-test, API ZYM test, high-performance liquid chromatography (HPLC), and D-/L-lactic acid assay respectively. The genome of B. breve IDCC4401 consists of 2,426,499 bp with a GC content of 58.70% and 2,016 coding regions. Confirmation of the genome as B. breve was provided by its 98.93% similarity with B. breve DSM20213. Furthermore, B. breve IDCC4401 genes encoding virulence and antibiotic resistance were not identified. Although B. breve IDCC4401 showed antibiotic resistance against vancomycin, we confirmed that this was an intrinsic feature since the antibiotic resistance gene was not present. B. breve IDCC4401 showed leucine arylamidase, cystine arylamidase, α-galactosidase, β-galactosidase, and α-glucosidase activities, whereas it did not show production of harmful enzymes such as β-glucosidase and β-glucuronidase. In addition, B. breve IDCC4401 did not produce any tyramine, histamine, putrescine, cadaverine, or 2-phenethylamine, which are frequently detected BAs during fermentation. B. breve IDCC4401 produced 95.08% of L-lactate and 4.92% of Dlactate. Therefore, our findings demonstrate the safety of B. breve IDCC 4401 as a potential probiotic for use in the food industry.

          Related collections

          Most cited references40

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          PHASTER: a better, faster version of the PHAST phage search tool

          PHASTER (PHAge Search Tool – Enhanced Release) is a significant upgrade to the popular PHAST web server for the rapid identification and annotation of prophage sequences within bacterial genomes and plasmids. Although the steps in the phage identification pipeline in PHASTER remain largely the same as in the original PHAST, numerous software improvements and significant hardware enhancements have now made PHASTER faster, more efficient, more visually appealing and much more user friendly. In particular, PHASTER is now 4.3× faster than PHAST when analyzing a typical bacterial genome. More specifically, software optimizations have made the backend of PHASTER 2.7X faster than PHAST, while the addition of 80 CPUs to the PHASTER compute cluster are responsible for the remaining speed-up. PHASTER can now process a typical bacterial genome in 3 min from the raw sequence alone, or in 1.5 min when given a pre-annotated GenBank file. A number of other optimizations have also been implemented, including automated algorithms to reduce the size and redundancy of PHASTER's databases, improvements in handling multiple (metagenomic) queries and higher user traffic, along with the ability to perform automated look-ups against 14 000 previously PHAST/PHASTER annotated bacterial genomes (which can lead to complete phage annotations in seconds as opposed to minutes). PHASTER's web interface has also been entirely rewritten. A new graphical genome browser has been added, gene/genome visualization tools have been improved, and the graphical interface is now more modern, robust and user-friendly. PHASTER is available online at www.phaster.ca.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The comprehensive antibiotic resistance database.

            The field of antibiotic drug discovery and the monitoring of new antibiotic resistance elements have yet to fully exploit the power of the genome revolution. Despite the fact that the first genomes sequenced of free living organisms were those of bacteria, there have been few specialized bioinformatic tools developed to mine the growing amount of genomic data associated with pathogens. In particular, there are few tools to study the genetics and genomics of antibiotic resistance and how it impacts bacterial populations, ecology, and the clinic. We have initiated development of such tools in the form of the Comprehensive Antibiotic Research Database (CARD; http://arpcard.mcmaster.ca). The CARD integrates disparate molecular and sequence data, provides a unique organizing principle in the form of the Antibiotic Resistance Ontology (ARO), and can quickly identify putative antibiotic resistance genes in new unannotated genome sequences. This unique platform provides an informatic tool that bridges antibiotic resistance concerns in health care, agriculture, and the environment.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              VFDB 2016: hierarchical and refined dataset for big data analysis—10 years on

              The virulence factor database (VFDB, http://www.mgc.ac.cn/VFs/) is dedicated to providing up-to-date knowledge of virulence factors (VFs) of various bacterial pathogens. Since its inception the VFDB has served as a comprehensive repository of bacterial VFs for over a decade. The exponential growth in the amount of biological data is challenging to the current database in regard to big data analysis. We recently improved two aspects of the infrastructural dataset of VFDB: (i) removed the redundancy introduced by previous releases and generated two hierarchical datasets – one core dataset of experimentally verified VFs only and another full dataset including all known and predicted VFs and (ii) refined the gene annotation of the core dataset with controlled vocabularies. Our efforts enhanced the data quality of the VFDB and promoted the usability of the database in the big data era for the bioinformatic mining of the explosively growing data regarding bacterial VFs.
                Bookmark

                Author and article information

                Journal
                J Microbiol Biotechnol
                J Microbiol Biotechnol
                Journal of Microbiology and Biotechnology
                The Korean Society for Microbiology and Biotechnology
                1017-7825
                1738-8872
                28 July 2021
                24 May 2021
                24 May 2021
                : 31
                : 7
                : 949-955
                Affiliations
                [1 ]School of Food Science and Biotechnology, Kyungpook National University, Daegu 41566, Republic of Korea
                [2 ]Food and Bio-Industry Research Institute, Kyungpook National University, Daegu 41566, Republic of Korea
                [3 ]Drug Information Platform Center, Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea
                [4 ]Ildong BioScience, Pyeongtaek 17957, Republic of Korea
                Author notes
                [* ] Corresponding author Phone: +82-53-950-5776 Fax: +82-53-950-6772 E-mail: parkmik@ 123456knu.ac.kr
                [†]

                I.Y. Choi and J. Kim contributed equally to this work.

                Article
                jmb-31-7-949
                10.4014/jmb.2103.03041
                9706084
                34024895
                3734cce6-98a3-41a6-b04b-21089e31479e
                Copyright © 2021 by The Korean Society for Microbiology and Biotechnology

                This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.

                History
                : 25 March 2021
                : 21 May 2021
                Categories
                Research article
                Molecular and Cellular Microbiology (MCM)
                Fermentation and Food Technology

                safety evaluation,bifidobacterium breve,probiotics
                safety evaluation, bifidobacterium breve, probiotics

                Comments

                Comment on this article