2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Exposure to environmental pharmaceuticals affects the macromolecular composition of mussels digestive glands

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Human pharmaceuticals represent a major challenge in natural environment. A better knowledge on their mechanisms of action and adverse effects on cellular pathways is fundamental to predict long-term consequences for marine wildlife. The FTIRI Imaging (FTIRI) spectroscopy represents a vibrational technique allowing to map specific areas of non-homogeneous biological samples, providing a unique biochemical and ultrastructural fingerprint of the tissue. In this study, FTIRI technique has been applied, for the first time, to characterize (i) the chemical building blocks of digestive glands of Mytilus galloprovincialis, (ii) alterations and (iii) resilience of macromolecular composition, after a 14-days exposure to 0.5 µg/L of carbamazepine (CBZ), valsartan (VAL) and their mixture, followed by a 14-days recovery period. Spectral features of mussels digestive glands provided insights on composition and topographical distribution of main groups of biological macromolecules, such as proteins, lipids, and glycosylated compounds. Pharmaceuticals caused an increase in the total amount of protein and a significant decrease of lipids levels. Changes in macromolecular features reflected the modulation of specific molecular and biochemical pathways thus supporting our knowledge on mechanisms of action of such emerging pollutants. Overall, the applied approach could represent an added value within integrated strategies for the effects-based evaluation of environmental contaminants.

          Related collections

          Most cited references48

          • Record: found
          • Abstract: found
          • Article: not found

          Using Fourier transform IR spectroscopy to analyze biological materials.

          IR spectroscopy is an excellent method for biological analyses. It enables the nonperturbative, label-free extraction of biochemical information and images toward diagnosis and the assessment of cell functionality. Although not strictly microscopy in the conventional sense, it allows the construction of images of tissue or cell architecture by the passing of spectral data through a variety of computational algorithms. Because such images are constructed from fingerprint spectra, the notion is that they can be an objective reflection of the underlying health status of the analyzed sample. One of the major difficulties in the field has been determining a consensus on spectral pre-processing and data analysis. This manuscript brings together as coauthors some of the leaders in this field to allow the standardization of methods and procedures for adapting a multistage approach to a methodology that can be applied to a variety of cell biological questions or used within a clinical setting for disease screening or diagnosis. We describe a protocol for collecting IR spectra and images from biological samples (e.g., fixed cytology and tissue sections, live cells or biofluids) that assesses the instrumental options available, appropriate sample preparation, different sampling modes as well as important advances in spectral data acquisition. After acquisition, data processing consists of a sequence of steps including quality control, spectral pre-processing, feature extraction and classification of the supervised or unsupervised type. A typical experiment can be completed and analyzed within hours. Example results are presented on the use of IR spectra combined with multivariate data processing.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Sources, impacts and trends of pharmaceuticals in the marine and coastal environment.

            There has been a significant investment in research to define exposures and potential hazards of pharmaceuticals in freshwater and terrestrial ecosystems. A substantial number of integrated environmental risk assessments have been developed in Europe, North America and many other regions for these situations. In contrast, comparatively few empirical studies have been conducted for human and veterinary pharmaceuticals that are likely to enter coastal and marine ecosystems. This is a critical knowledge gap given the significant increase in coastal human populations around the globe and the growth of coastal megacities, together with the increasing importance of coastal aquaculture around the world. There is increasing evidence that pharmaceuticals are present and are impacting on marine and coastal environments. This paper reviews the sources, impacts and concentrations of pharmaceuticals in marine and coastal environments to identify knowledge gaps and suggests focused case studies as a priority for future research.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Pharmaceuticals in the aquatic environments: Evidence of emerged threat and future challenges for marine organisms

                Bookmark

                Author and article information

                Contributors
                f.regoli@univpm.it
                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group UK (London )
                2045-2322
                23 April 2024
                23 April 2024
                2024
                : 14
                : 9369
                Affiliations
                [1 ]Dipartimento di Scienze della Vita e dell’Ambiente (DiSVA), Università Politecnica delle Marche, ( https://ror.org/00x69rs40) Ancona, 60131 Italy
                [2 ]NBFC, National Biodiversity Future Center, Palermo, 90131, Italy
                Article
                59663
                10.1038/s41598-024-59663-7
                11039728
                38653774
                36beb549-9122-4b56-90c3-c464d4d790e3
                © The Author(s) 2024

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 8 January 2024
                : 12 April 2024
                Funding
                Funded by: 2020 AquaticPollutants Joint call of the AquaticPollutants ERA-NET Cofund (PHARMASEA project)
                Award ID: 869178
                Funded by: “Programma Operativo Nazionale (PON) Ricerca e Innovazione 2014-2020” (MUR, Italy), by European Union REACT-EU
                Funded by: National Recovery and Resilience Plan (NRRP), European Union – NextGenerationEU. Project title “National Biodiversity Future Center—NBFC”)
                Award ID: CN_00000033
                Categories
                Article
                Custom metadata
                © Springer Nature Limited 2024

                Uncategorized
                environmental pharmaceuticals,carbamazepine,mechanisms of action,lipid metabolism,digestive gland,mytilus galloprovincialis,infrared spectroscopy,biological models,experimental organisms,model invertebrates,marine biology

                Comments

                Comment on this article