50
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      A Genome-Wide Survey of Imprinted Genes in Rice Seeds Reveals Imprinting Primarily Occurs in the Endosperm

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Genomic imprinting causes the expression of an allele depending on its parental origin. In plants, most imprinted genes have been identified in Arabidopsis endosperm, a transient structure consumed by the embryo during seed formation. We identified imprinted genes in rice seed where both the endosperm and embryo are present at seed maturity. RNA was extracted from embryos and endosperm of seeds obtained from reciprocal crosses between two subspecies Nipponbare (Japonica rice) and 93-11 (Indica rice). Sequenced reads from cDNA libraries were aligned to their respective parental genomes using single-nucleotide polymorphisms (SNPs). Reads across SNPs enabled derivation of parental expression bias ratios. A continuum of parental expression bias states was observed. Statistical analyses indicated 262 candidate imprinted loci in the endosperm and three in the embryo (168 genic and 97 non-genic). Fifty-six of the 67 loci investigated were confirmed to be imprinted in the seed. Imprinted loci are not clustered in the rice genome as found in mammals. All of these imprinted loci were expressed in the endosperm, and one of these was also imprinted in the embryo, confirming that in both rice and Arabidopsis imprinted expression is primarily confined to the endosperm. Some rice imprinted genes were also expressed in vegetative tissues, indicating that they have additional roles in plant growth. Comparison of candidate imprinted genes found in rice with imprinted candidate loci obtained from genome-wide surveys of imprinted genes in Arabidopsis to date shows a low degree of conservation, suggesting that imprinting has evolved independently in eudicots and monocots.

          Author Summary

          The expression of maternal or paternal alleles in either a preferentially or exclusively uniparental manner, termed imprinting, is prevalent in the transient endosperm of seeds in the model plant Arabidopsis. Cereals form seeds where both the embryo and endosperm are present at seed maturity. They are an important world food source. To date, very few imprinted genes have been identified in cereal seeds. How parental gene expression biases contribute to rice seed development has not yet been studied in detail. The deep resolution of transcript sequencing platforms was used to identify loci expressed in a parentally biased manner in the embryo and endosperm of Indica and Japonica rice at a genome-wide level. We identified 262 candidate imprinted loci expressed in the endosperm, experimentally verified 56 of these, and found novel features pertaining to their expression. Only one gene was found to be imprinted in the rice embryo. Imprinting in Arabidopsis and rice seeds is confined primarily to the endosperm, but the identified loci do not share extensive sequence conservation. Imprinting thus appears to have evolved independently in these plant species.

          Related collections

          Most cited references57

          • Record: found
          • Abstract: found
          • Article: not found

          Rice plant development: from zygote to spikelet.

          Rice is becoming a model plant in monocotyledons and a model cereal crop. For better understanding of the rice plant, it is essential to elucidate the developmental programs of the life cycle. To date, several attempts have been made in rice to categorize the developmental processes of some organs into substages. These studies are based exclusively on the morphological and anatomical viewpoints. Recent advancement in genetics and molecular biology has given us new aspects of developmental processes. In this review, we first describe the phasic development of the rice plant, and then describe in detail the developmental courses of major organs, leaf, root and spikelet, and specific organs/tissues. Also, for the facility of future studies, we propose a staging system for each organ.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            DEMETER DNA glycosylase establishes MEDEA polycomb gene self-imprinting by allele-specific demethylation.

            MEDEA (MEA) is an Arabidopsis Polycomb group gene that is imprinted in the endosperm. The maternal allele is expressed and the paternal allele is silent. MEA is controlled by DEMETER (DME), a DNA glycosylase required to activate MEA expression, and METHYLTRANSFERASE I (MET1), which maintains CG methylation at the MEA locus. Here we show that DME is responsible for endosperm maternal-allele-specific hypomethylation at the MEA gene. DME can excise 5-methylcytosine in vitro and when expressed in E. coli. Abasic sites opposite 5-methylcytosine inhibit DME activity and might prevent DME from generating double-stranded DNA breaks. Unexpectedly, paternal-allele silencing is not controlled by DNA methylation. Rather, Polycomb group proteins that are expressed from the maternal genome, including MEA, control paternal MEA silencing. Thus, DME establishes MEA imprinting by removing 5-methylcytosine to activate the maternal allele. MEA imprinting is subsequently maintained in the endosperm by maternal MEA silencing the paternal allele.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              High-resolution analysis of parent-of-origin allelic expression in the mouse brain.

              Genomic imprinting results in preferential expression of the paternal or maternal allele of certain genes. We have performed a genome-wide characterization of imprinting in the mouse embryonic and adult brain. This approach uncovered parent-of-origin allelic effects of more than 1300 loci. We identified parental bias in the expression of individual genes and of specific transcript isoforms, with differences between brain regions. Many imprinted genes are expressed in neural systems associated with feeding and motivated behaviors, and parental biases preferentially target genetic pathways governing metabolism and cell adhesion. We observed a preferential maternal contribution to gene expression in the developing brain and a major paternal contribution in the adult brain. Thus, parental expression bias emerges as a major mode of epigenetic regulation in the brain.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Genet
                plos
                plosgen
                PLoS Genetics
                Public Library of Science (San Francisco, USA )
                1553-7390
                1553-7404
                June 2011
                June 2011
                23 June 2011
                : 7
                : 6
                : e1002125
                Affiliations
                [1 ]CSIRO Plant Industry, Canberra, Australia
                [2 ]Rice Research Institute of Sichuan Agricultural University, Chengdu, Sichuan, China
                [3 ]Department of Botany and Microbiology, University of Oklahoma, Norman, Oklahoma, United States of America
                [4 ]Plant Molecular Biology and Biotechnology Laboratory, The University of Melbourne, Melbourne, Australia
                [5 ]CSIRO Plant Industry, Waite Campus, Adelaide, Australia
                National Institute of Genetics, Japan
                Author notes

                Conceived and designed the experiments: HZ ML. Performed the experiments: HZ ML. Analyzed the data: JMT AS ML AK. Contributed reagents/materials/analysis tools: XW SR MS. Wrote the paper: ML JMT AK.

                Article
                PGENETICS-D-10-00608
                10.1371/journal.pgen.1002125
                3121744
                21731498
                369a3753-8aa6-4702-bda9-247327e4f20a
                Luo et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 23 December 2010
                : 21 April 2011
                Page count
                Pages: 14
                Categories
                Research Article
                Agriculture
                Biology

                Genetics
                Genetics

                Comments

                Comment on this article