13
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Simulating Mars Drilling Mission for Searching for Life: Ground-Truthing Lipids and Other Complex Microbial Biomarkers in the Iron-Sulfur Rich Río Tinto Analog

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Sulfate and iron oxide deposits in Río Tinto (Southwestern Spain) are a terrestrial analog of early martian hematite-rich regions. Understanding the distribution and drivers of microbial life in iron-rich environments can give critical clues on how to search for biosignatures on Mars. We simulated a robotic drilling mission searching for signs of life in the martian subsurface, by using a 1m-class planetary prototype drill mounted on a full-scale mockup of NASA's Phoenix and InSight lander platforms. We demonstrated fully automated and aseptic drilling on iron and sulfur rich sediments at the Río Tinto riverbanks, and sample transfer and delivery to sterile containers and analytical instruments. As a ground-truth study, samples were analyzed in the field with the life detector chip immunoassay for searching microbial markers, and then in the laboratory with X-ray diffraction to determine mineralogy, gas chromatography/mass spectrometry for lipid composition, isotope-ratio mass spectrometry for isotopic ratios, and 16S/18S rRNA genes sequencing for biodiversity. A ubiquitous presence of microbial biomarkers distributed along the 1m-depth subsurface was influenced by the local mineralogy and geochemistry. The spatial heterogeneity of abiotic variables at local scale highlights the importance of considering drill replicates in future martian drilling missions. The multi-analytical approach provided proof of concept that molecular biomarkers varying in compositional nature, preservation potential, and taxonomic specificity can be recovered from shallow drilling on iron-rich Mars analogues by using an automated life-detection lander prototype, such as the one proposed for NASA's IceBreaker mission proposal.

          Related collections

          Most cited references53

          • Record: found
          • Abstract: found
          • Article: not found

          Leaf epicuticular waxes.

          The external surface of the higher plants comprises a cuticular layer covered by a waxy deposit. This deposit is believed to play a major part in such phenomena as the water balance of plants and the behavior of agricultural sprays. The wax contains a wide range of organic compounds. These complex mixtures are amenable to modern microchromatographic and microspectrometric analytical procedures. The few surveys which have been made of the species distribution of certain classes of constituents indicate that such distribution may be of limited taxonomic value; however, the wax composition of a species may differ for different parts of the same plant and may vary with season, locale, and the age of the plant. This fascinating subject, in which the disciplines of botany, biochemistry, chemistry, and physics overlap and interact, is still in a very active state. Much remains to be learned about the composition and fine structure of the wax deposits, and, for this, experimental study of wax crystallization and permeation through artificial membranes will be required. Enzymic studies, radiolabeling, and electron microscopy will be needed to reveal the mode of biogenesis of the wax constituents and their site of formation and subsequent pathway through the cuticle to the leaf surface.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Preservation of elemental and isotopic source identification of sedimentary organic matter

              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Transient liquid water and water activity at Gale crater on Mars

                Bookmark

                Author and article information

                Journal
                Astrobiology
                Astrobiology
                ast
                Astrobiology
                Mary Ann Liebert, Inc., publishers (140 Huguenot Street, 3rd FloorNew Rochelle, NY 10801USA )
                1531-1074
                1557-8070
                September 2020
                15 September 2020
                15 September 2020
                : 20
                : 9
                : 1029-1047
                Affiliations
                [ 1 ]Centro de Astrobiología (CSIC-INTA), Madrid, Spain.
                [ 2 ]NASA Ames Research Center, Moffett Field, California.
                Author notes
                [*]Address correspondence to: Laura Sánchez-García, Centro de Astrobiología (CSIC-INTA), Carretera de Ajalvir km 4, Torrejón de Ardoz, Madrid 28850, Spain lsanchez@ 123456cab.inta-csic.es
                Article
                10.1089/ast.2019.2101
                10.1089/ast.2019.2101
                7499885
                31916858
                35d1df20-dc5e-4651-aafc-dc512e895a14
                © Laura Sánchez-García et al., 2019; Published by Mary Ann Liebert, Inc.

                This Open Access article is distributed under the terms of the Creative Commons License ( http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited.

                History
                : Submitted 17 May 2019
                : Accepted 18 November 2019
                Page count
                Figures: 9, Tables: 2, References: 61, Pages: 19
                Categories
                Special Collection Articles

                lipid biomarkers,ldchip,icebreaker prototype drill,life detection,planetary exploration

                Comments

                Comment on this article

                scite_

                Similar content91

                Cited by16

                Most referenced authors944