10
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Effects of Vibration Rolling with and without Dynamic Muscle Contraction on Ankle Range of Motion, Proprioception, Muscle Strength and Agility in Young Adults: A Crossover Study

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Vibration rolling (VR) has emerged as a self-myofascial release (SMR) tool to aid exercise performance when warming up. However, the benefits of VR on exercise performance when combined with dynamic muscle contraction are unclear. The purpose of this study was to investigate the immediate effects of the combination of VR with dynamic muscle contraction (DVR), VR, and static stretching (SS) during warm-up on range of motion (ROM), proprioception, muscle strength of the ankle, and agility in young adults. In this crossover design study, 20 recreationally active adults without musculoskeletal disorders completed three test sessions in a randomized order, with 48 h of rest between each session. Participants completed one warm-up intervention and its measurements on the same day; different warm-up interventions and measurements were performed on each of the three days. The measurements included ankle dorsiflexion and plantarflexion ROM, ankle joint proprioception, muscle strength, and agility. After DVR and VR intervention, ankle dorsiflexion ROM (both DVR and VR, p < 0.001), plantarflexion ROM (both DVR and VR, p < 0.001), plantar flexor muscle strength (DVR, p = 0.007; VR, p < 0.001), and agility (DVR, p = 0.016; VR, p = 0.007) significantly improved; after SS intervention, ankle dorsiflexion and plantar flexion ROM (dorsiflexion, p < 0.001; plantar flexion, p = 0.009) significantly improved, but muscle strength and agility were not enhanced. Compared with SS, DVR and VR significantly improved ankle plantar flexor muscle strength ( p = 0.008 and p = 0.001, respectively). Furthermore, DVR significantly improved ankle dorsiflexion compared with VR ( p < 0.001) and SS ( p < 0.001). In conclusion, either DVR, VR, or SS increased ankle ROM, but only DVR and VR increased muscle strength and agility. In addition, DVR produced considerable increases in ankle dorsiflexion. These findings may have implications for warm-up prescription and implementation in both rehabilitative and athletic practice settings.

          Related collections

          Most cited references43

          • Record: found
          • Abstract: found
          • Article: not found

          Acute effects of muscle stretching on physical performance, range of motion, and injury incidence in healthy active individuals: a systematic review.

          Recently, there has been a shift from static stretching (SS) or proprioceptive neuromuscular facilitation (PNF) stretching within a warm-up to a greater emphasis on dynamic stretching (DS). The objective of this review was to compare the effects of SS, DS, and PNF on performance, range of motion (ROM), and injury prevention. The data indicated that SS- (-3.7%), DS- (+1.3%), and PNF- (-4.4%) induced performance changes were small to moderate with testing performed immediately after stretching, possibly because of reduced muscle activation after SS and PNF. A dose-response relationship illustrated greater performance deficits with ≥60 s (-4.6%) than with <60 s (-1.1%) SS per muscle group. Conversely, SS demonstrated a moderate (2.2%) performance benefit at longer muscle lengths. Testing was performed on average 3-5 min after stretching, and most studies did not include poststretching dynamic activities; when these activities were included, no clear performance effect was observed. DS produced small-to-moderate performance improvements when completed within minutes of physical activity. SS and PNF stretching had no clear effect on all-cause or overuse injuries; no data are available for DS. All forms of training induced ROM improvements, typically lasting <30 min. Changes may result from acute reductions in muscle and tendon stiffness or from neural adaptations causing an improved stretch tolerance. Considering the small-to-moderate changes immediately after stretching and the study limitations, stretching within a warm-up that includes additional poststretching dynamic activity is recommended for reducing muscle injuries and increasing joint ROM with inconsequential effects on subsequent athletic performance.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            An acute bout of self-myofascial release increases range of motion without a subsequent decrease in muscle activation or force.

            Foam rolling is thought to improve muscular function, performance, overuse, and joint range of motion (ROM); however, there is no empirical evidence demonstrating this. Thus, the objective of the study was to determine the effect of self-myofascial release (SMR) via foam roller application on knee extensor force and activation and knee joint ROM. Eleven healthy male (height 178.9 ± 3.5 cm, mass 86.3 ± 7.4 kg, age 22.3 ± 3.8 years) subjects who were physically active participated. Subjects' quadriceps maximum voluntary contraction force, evoked force and activation, and knee joint ROM were measured before, 2 minutes, and 10 minutes after 2 conditions: (a) 2, 1-minute trials of SMR of the quadriceps via a foam roller and (b) no SMR (Control). A 2-way analysis of variance (condition × time) with repeated measures was performed on all dependent variables recorded in the precondition and postcondition tests. There were no significant differences between conditions for any of the neuromuscular dependent variables. However, after foam rolling, subjects' ROM significantly (p < 0.001) increased by 10° and 8° at 2 and 10 minutes, respectively. There was a significant (p < 0.01) negative correlation between subjects' force and ROM before foam rolling, which no longer existed after foam rolling. In conclusion, an acute bout of SMR of the quadriceps was an effective treatment to acutely enhance knee joint ROM without a concomitant deficit in muscle performance.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Whole-body vibration exercise leads to alterations in muscle blood volume.

              Occupationally used high-frequency vibration is supposed to have negative effects on blood flow and muscle strength. Conversely, low-frequency vibration used as a training tool appears to increase muscle strength, but nothing is known about its effects on peripheral circulation. The aim of this investigation was to quantify alterations in muscle blood volume after whole muscle vibration--after exercising on the training device Galileo 2000 (Novotec GmbH, Pforzheim, Germany). Twenty healthy adults performed a 9-min standing test. They stood with both feet on a platform, producing oscillating mechanical vibrations of 26 Hz. Alterations in muscle blood volume of the quadriceps and gastrocnemius muscles were assessed with power Doppler sonography and arterial blood flow of the popliteal artery with a Doppler ultrasound machine. Measurements were performed before and immediately after exercising. Power Doppler indices indicative of muscular blood circulation in the calf and thigh significantly increased after exercise. The mean blood flow velocity in the popliteal artery increased from 6.5 to 13.0 cm x s(-1) and its resistive index was significantly reduced. The results indicate that low-frequency vibration does not have the negative effects on peripheral circulation known from occupational high-frequency vibration.
                Bookmark

                Author and article information

                Journal
                Int J Environ Res Public Health
                Int J Environ Res Public Health
                ijerph
                International Journal of Environmental Research and Public Health
                MDPI
                1661-7827
                1660-4601
                04 January 2020
                January 2020
                : 17
                : 1
                : 354
                Affiliations
                [1 ]Department of Sports Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan; jison0309@ 123456gmail.com
                [2 ]Center for Physical and Health Education, National Sun Yat-sen University, Kaohsiung 804, Taiwan; karenlee1129@ 123456gmail.com
                [3 ]Department of Sport Performance, National Taiwan University of Sport, Taichung 404, Taiwan; changwendien@ 123456ntupes.edu.tw
                [4 ]PhD Program in Biomedical Engineering, Kaohsiung Medical University, Kaohsiung 807, Taiwan
                [5 ]Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 807, Taiwan
                Author notes
                [* ]Correspondence: njchang@ 123456kmu.edu.tw ; Tel.: +886-7312-1101 (ext. 2646); Fax: +886-7313-8359
                Author information
                https://orcid.org/0000-0001-5546-5874
                https://orcid.org/0000-0001-8408-8334
                Article
                ijerph-17-00354
                10.3390/ijerph17010354
                6982037
                31948000
                357ad927-2999-4216-88e6-07c64e55af24
                © 2020 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 05 December 2019
                : 03 January 2020
                Categories
                Article

                Public health
                sports,performance,vibration therapy,self-myofascial release,therapeutic exercise
                Public health
                sports, performance, vibration therapy, self-myofascial release, therapeutic exercise

                Comments

                Comment on this article