17
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Crawling Cells Can Close Wounds without Purse Strings or Signaling

      research-article
      , *
      PLoS Computational Biology
      Public Library of Science

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          When a gash or gouge is made in a confluent layer of epithelial cells, the cells move to fill in the “wound.” In some cases, such as in wounded embryonic chick wing buds, the movement of the cells is driven by cortical actin contraction (i.e., a purse string mechanism). In adult tissue, though, cells apparently crawl to close wounds. At the single cell level, this crawling is driven by the dynamics of the cell's actin cytoskeleton, which is regulated by a complex biochemical network, and cell signaling has been proposed to play a significant role in directing cells to move into the denuded area. However, wounds made in monolayers of Madin-Darby canine kidney (MDCK) cells still close even when a row of cells is deactivated at the periphery of the wound, and recent experiments show complex, highly-correlated cellular motions that extend tens of cell lengths away from the boundary. These experiments suggest a dominant role for mechanics in wound healing. Here we present a biophysical description of the collective migration of epithelial cells during wound healing based on the basic motility of single cells and cell-cell interactions. This model quantitatively captures the dynamics of wound closure and reproduces the complex cellular flows that are observed. These results suggest that wound healing is predominantly a mechanical process that is modified, but not produced, by cell-cell signaling.

          Author Summary

          Wound healing is driven by the collective migration of groups of epithelial cells. Experiments have shown that the motions of cells during wound healing are not as simple as had once been thought. Indeed, cells do not just move out to fill in the wounded area but rather undergo a number of complex but coordinated motions. Furthermore, wound healing is not just a response to chemical cues and can be driven by cells that are not immediately at the edge of the wound. In this paper, we develop a mathematical model based on the mechanical behavior of single crawling cells and also includes cell-cell adhesion. We show that this model is capable of explaining quantitatively the dynamics that occur during wound healing assays. This suggests that wound healing is largely a mechanical process where chemical signaling merely acts to augment the overall behavior.

          Related collections

          Most cited references44

          • Record: found
          • Abstract: found
          • Article: not found

          Collective migration of an epithelial monolayer in response to a model wound.

          Using an original microfabrication-based technique, we experimentally study situations in which a virgin surface is presented to a confluent epithelium with no damage made to the cells. Although inspired by wound-healing experiments, the situation is markedly different from classical scratch wounding because it focuses on the influence of the free surface and uncouples it from the other possible contributions such as cell damage and/or permeabilization. Dealing with Madin-Darby canine kidney cells on various surfaces, we found that a sudden release of the available surface is sufficient to trigger collective motility. This migration is independent of the proliferation of the cells that mainly takes place on the fraction of the surface initially covered. We find that this motility is characterized by a duality between collective and individual behaviors. On the one hand, the velocity fields within the monolayer are very long range and involve many cells in a coordinated way. On the other hand, we have identified very active "leader cells" that precede a small cohort and destabilize the border by a fingering instability. The sides of the fingers reveal a pluricellular actin "belt" that may be at the origin of a mechanical signaling between the leader and the followers. Experiments performed with autocrine cells constitutively expressing hepatocyte growth factor (HGF) or in the presence of exogenous HGF show a higher average velocity of the border and no leader.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Stresses at the cell-to-substrate interface during locomotion of fibroblasts.

            Recent technological improvements in the elastic substrate method make it possible to produce spatially resolved measurements of the tractions exerted by single motile cells. In this study we have applied these developments to produce maps of the tractions exerted by 3T3 fibroblasts during steady locomotion. The resulting images have a spatial resolution of approximately 5 micrometers and a maximum intensity of approximately 10(2) kdyn/cm2 (10(4) pN/micrometers2). We find that the propulsive thrust for fibroblast locomotion, approximately 0.2 dyn, is imparted to the substratum within 15 micrometers of the leading edge. These observations demonstrate that the lamellipodium of the fibroblast is able to generate intense traction stress. The cell body and posterior seem to be mechanically passive structures pulled forward entirely by this action.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Actin and alpha-actinin orchestrate the assembly and maturation of nascent adhesions in a myosin II motor-independent manner.

              Using two-colour imaging and high resolution TIRF microscopy, we investigated the assembly and maturation of nascent adhesions in migrating cells. We show that nascent adhesions assemble and are stable within the lamellipodium. The assembly is independent of myosin II but its rate is proportional to the protrusion rate and requires actin polymerization. At the lamellipodium back, the nascent adhesions either disassemble or mature through growth and elongation. Maturation occurs along an alpha-actinin-actin template that elongates centripetally from nascent adhesions. Alpha-Actinin mediates the formation of the template and organization of adhesions associated with actin filaments, suggesting that actin crosslinking has a major role in this process. Adhesion maturation also requires myosin II. Rescue of a myosin IIA knockdown with an actin-bound but motor-inhibited mutant of myosin IIA shows that the actin crosslinking function of myosin II mediates initial adhesion maturation. From these studies, we have developed a model for adhesion assembly that clarifies the relative contributions of myosin II and actin polymerization and organization.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Comput Biol
                plos
                ploscomp
                PLoS Computational Biology
                Public Library of Science (San Francisco, USA )
                1553-734X
                1553-7358
                March 2011
                March 2011
                10 March 2011
                : 7
                : 3
                : e1002007
                Affiliations
                [1]University of Connecticut Health Center, Department of Cell Biology and Center for Cell Analysis and Modeling, Farmington, Connecticut, United States of America
                University of California, San Diego, United States of America
                Author notes

                Conceived and designed the experiments: CWW PL. Performed the experiments: CWW PL. Analyzed the data: CWW PL. Contributed reagents/materials/analysis tools: CWW PL. Wrote the paper: CWW PL.

                Article
                PCOMPBIOL-D-10-00013
                10.1371/journal.pcbi.1002007
                3053312
                21423710
                34716b6c-9fa0-48e3-b0a1-d66702d14f46
                Lee, Wolgemuth. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 27 September 2010
                : 23 December 2010
                Page count
                Pages: 8
                Categories
                Research Article
                Biology
                Biophysics
                Biomechanics
                Cell Mechanics
                Tissue Mechanics
                Biophysics Simulations
                Biophysics Theory
                Cell Motility
                Computational Biology
                Systems Biology

                Quantitative & Systems biology
                Quantitative & Systems biology

                Comments

                Comment on this article