11
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Catch Me If You Can! RNA Silencing-Based Improvement of Antiviral Plant Immunity

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Viruses are obligate parasites which cause a range of severe plant diseases that affect farm productivity around the world, resulting in immense annual losses of yield. Therefore, control of viral pathogens continues to be an agronomic and scientific challenge requiring innovative and ground-breaking strategies to meet the demands of a growing world population. Over the last decade, RNA silencing has been employed to develop plants with an improved resistance to biotic stresses based on their function to provide protection from invasion by foreign nucleic acids, such as viruses. This natural phenomenon can be exploited to control agronomically relevant plant diseases. Recent evidence argues that this biotechnological method, called host-induced gene silencing, is effective against sucking insects, nematodes, and pathogenic fungi, as well as bacteria and viruses on their plant hosts. Here, we review recent studies which reveal the enormous potential that RNA-silencing strategies hold for providing an environmentally friendly mechanism to protect crop plants from viral diseases.

          Related collections

          Most cited references203

          • Record: found
          • Abstract: found
          • Article: not found

          Small silencing RNAs: an expanding universe.

          Since the discovery in 1993 of the first small silencing RNA, a dizzying number of small RNA classes have been identified, including microRNAs (miRNAs), small interfering RNAs (siRNAs) and Piwi-interacting RNAs (piRNAs). These classes differ in their biogenesis, their modes of target regulation and in the biological pathways they regulate. There is a growing realization that, despite their differences, these distinct small RNA pathways are interconnected, and that small RNA pathways compete and collaborate as they regulate genes and protect the genome from external and internal threats.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            RNA silencing in plants.

            There are at least three RNA silencing pathways for silencing specific genes in plants. In these pathways, silencing signals can be amplified and transmitted between cells, and may even be self-regulated by feedback mechanisms. Diverse biological roles of these pathways have been established, including defence against viruses, regulation of gene expression and the condensation of chromatin into heterochromatin. We are now in a good position to investigate the full extent of this functional diversity in genetic and epigenetic mechanisms of genome control.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Fungal small RNAs suppress plant immunity by hijacking host RNA interference pathways.

              Botrytis cinerea, the causative agent of gray mold disease, is an aggressive fungal pathogen that infects more than 200 plant species. Here, we show that some B. cinerea small RNAs (Bc-sRNAs) can silence Arabidopsis and tomato genes involved in immunity. These Bc-sRNAs hijack the host RNA interference (RNAi) machinery by binding to Arabidopsis Argonaute 1 (AGO1) and selectively silencing host immunity genes. The Arabidopsis ago1 mutant exhibits reduced susceptibility to B. cinerea, and the B. cinerea dcl1 dcl2 double mutant that can no longer produce these Bc-sRNAs displays reduced pathogenicity on Arabidopsis and tomato. Thus, this fungal pathogen transfers "virulent" sRNA effectors into host plant cells to suppress host immunity and achieve infection, which demonstrates a naturally occurring cross-kingdom RNAi as an advanced virulence mechanism.
                Bookmark

                Author and article information

                Journal
                Viruses
                Viruses
                viruses
                Viruses
                MDPI
                1999-4915
                23 July 2019
                July 2019
                : 11
                : 7
                : 673
                Affiliations
                Centre for BioSystems, Institute of Phytopathology, Land Use and Nutrition, Justus Liebig University, Heinrich-Buff-Ring 26, D-35392 Giessen, Germany
                Author notes
                Author information
                https://orcid.org/0000-0003-3536-5344
                Article
                viruses-11-00673
                10.3390/v11070673
                6669615
                31340474
                33c349f8-a2eb-4493-bd45-db01badbf4c1
                © 2019 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 04 April 2019
                : 17 July 2019
                Categories
                Review

                Microbiology & Virology
                rna silencing,host-induced gene silencing,spray-induced gene silencing,virus control,rna silencing-based crop protection,gmo crops

                Comments

                Comment on this article