2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Manipulation of the Plant Host by the Geminivirus AC2/C2 Protein, a Central Player in the Infection Cycle

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Geminiviruses are a significant group of emergent plant DNA viruses causing devastating diseases in food crops worldwide, including the Southern United States, Central America and the Caribbean. Crop failure due to geminivirus-related disease can be as high as 100%. Improved global transportation has enhanced the spread of geminiviruses and their vectors, supporting the emergence of new, more virulent recombinant strains. With limited coding capacity, geminiviruses encode multifunctional proteins, including the AC2/C2 gene that plays a central role in the viral replication-cycle through suppression of host defenses and transcriptional regulation of the late viral genes. The AC2/C2 proteins encoded by mono- and bipartite geminiviruses and the curtovirus C2 can be considered virulence factors, and are known to interact with both basal and inducible systems. This review highlights the role of AC2/C2 in affecting the jasmonic acid and salicylic acid (JA and SA) pathways, the ubiquitin/proteasome system (UPS), and RNA silencing pathways. In addition to suppressing host defenses, AC2/C2 play a critical role in regulating expression of the coat protein during the viral life cycle. It is important that the timing of CP expression is regulated to ensure that ssDNA is converted to dsDNA early during an infection and is sequestered late in the infection. How AC2 interacts with host transcription factors to regulate CP expression is discussed along with how computational approaches can help identify critical host networks targeted by geminivirus AC2 proteins. Thus, the role of AC2/C2 in the viral life-cycle is to prevent the host from mounting an efficient defense response to geminivirus infection and to ensure maximal amplification and encapsidation of the viral genome.

          Related collections

          Most cited references104

          • Record: found
          • Abstract: found
          • Article: not found

          Top 10 plant viruses in molecular plant pathology.

          Many scientists, if not all, feel that their particular plant virus should appear in any list of the most important plant viruses. However, to our knowledge, no such list exists. The aim of this review was to survey all plant virologists with an association with Molecular Plant Pathology and ask them to nominate which plant viruses they would place in a 'Top 10' based on scientific/economic importance. The survey generated more than 250 votes from the international community, and allowed the generation of a Top 10 plant virus list for Molecular Plant Pathology. The Top 10 list includes, in rank order, (1) Tobacco mosaic virus, (2) Tomato spotted wilt virus, (3) Tomato yellow leaf curl virus, (4) Cucumber mosaic virus, (5) Potato virus Y, (6) Cauliflower mosaic virus, (7) African cassava mosaic virus, (8) Plum pox virus, (9) Brome mosaic virus and (10) Potato virus X, with honourable mentions for viruses just missing out on the Top 10, including Citrus tristeza virus, Barley yellow dwarf virus, Potato leafroll virus and Tomato bushy stunt virus. This review article presents a short review on each virus of the Top 10 list and its importance, with the intent of initiating discussion and debate amongst the plant virology community, as well as laying down a benchmark, as it will be interesting to see in future years how perceptions change and which viruses enter and leave the Top 10. © 2011 The Authors. Molecular Plant Pathology © 2011 BSPP and Blackwell Publishing Ltd.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Structural insights into NEDD8 activation of cullin-RING ligases: conformational control of conjugation.

            Cullin-RING ligases (CRLs) comprise the largest ubiquitin E3 subclass, in which a central cullin subunit links a substrate-binding adaptor with an E2-binding RING. Covalent attachment of the ubiquitin-like protein NEDD8 to a conserved C-terminal domain (ctd) lysine stimulates CRL ubiquitination activity and prevents binding of the inhibitor CAND1. Here we report striking conformational rearrangements in the crystal structure of NEDD8~Cul5(ctd)-Rbx1 and SAXS analysis of NEDD8~Cul1(ctd)-Rbx1 relative to their unmodified counterparts. In NEDD8ylated CRL structures, the cullin WHB and Rbx1 RING subdomains are dramatically reoriented, eliminating a CAND1-binding site and imparting multiple potential catalytic geometries to an associated E2. Biochemical analyses indicate that the structural malleability is important for both CRL NEDD8ylation and subsequent ubiquitination activities. Thus, our results point to a conformational control of CRL activity, with ligation of NEDD8 shifting equilibria to disfavor inactive CAND1-bound closed architectures, and favor dynamic, open forms that promote polyubiquitination.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Geminiviruses: masters at redirecting and reprogramming plant processes.

              The family Geminiviridae is one of the largest and most important families of plant viruses. The small, single-stranded DNA genomes of geminiviruses encode 5-7 proteins that redirect host machineries and processes to establish a productive infection. These interactions reprogramme plant cell cycle and transcriptional controls, inhibit cell death pathways, interfere with cell signalling and protein turnover, and suppress defence pathways. This Review describes our current knowledge of how geminiviruses interact with their plant hosts and the functional consequences of these interactions.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Plant Sci
                Front Plant Sci
                Front. Plant Sci.
                Frontiers in Plant Science
                Frontiers Media S.A.
                1664-462X
                19 May 2020
                2020
                : 11
                : 591
                Affiliations
                [1] 1Department of Biology, South Texas Center for Emerging Infectious Diseases, University of Texas at San Antonio , San Antonio, TX, United States
                [2] 2Department of Molecular Genetics, Center for Applied Plant Sciences, Center for RNA Biology, Infectious Diseases Institute, The Ohio State University , Columbus, OH, United States
                [3] 3Department of Computer Science, North Dakota State University , Fargo, ND, United States
                [4] 4Department of Computer Science, University of Texas at San Antonio , San Antonio, TX, United States
                Author notes

                Edited by: Jose Trinidad Ascencio-Ibáñez, North Carolina State University, United States

                Reviewed by: Ramón Gerardo Guevara-Gonzalez, Universidad Autónoma de Querétaro, Mexico; Wei Shen, North Carolina State University, United States

                *Correspondence: Garry Sunter, garry.sunter@ 123456utsa.edu

                This article was submitted to Virology, a section of the journal Frontiers in Plant Science

                Article
                10.3389/fpls.2020.00591
                7248346
                32508858
                32652ebe-f4e8-4823-a938-c8975a56dd99
                Copyright © 2020 Guerrero, Regedanz, Lu, Ruan, Bisaro and Sunter.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 29 February 2020
                : 20 April 2020
                Page count
                Figures: 8, Tables: 1, Equations: 0, References: 114, Pages: 18, Words: 0
                Categories
                Plant Science
                Review

                Plant science & Botany
                ac2/c2,pathogenicity factor,transcriptional activation,ptgs,tgs,antiviral defense response

                Comments

                Comment on this article