6
views
0
recommends
+1 Recommend
1 collections
    0
    shares

      Submit your digital health research with an established publisher
      - celebrating 25 years of open access

      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Predictive Value of Machine Learning for Platinum Chemotherapy Responses in Ovarian Cancer: Systematic Review and Meta-Analysis

      review-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Machine learning is a potentially effective method for predicting the response to platinum-based treatment for ovarian cancer. However, the predictive performance of various machine learning methods and variables is still a matter of controversy and debate.

          Objective

          This study aims to systematically review relevant literature on the predictive value of machine learning for platinum-based chemotherapy responses in patients with ovarian cancer.

          Methods

          Following the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines, we systematically searched the PubMed, Embase, Web of Science, and Cochrane databases for relevant studies on predictive models for platinum-based therapies for the treatment of ovarian cancer published before April 26, 2023. The Prediction Model Risk of Bias Assessment tool was used to evaluate the risk of bias in the included articles. Concordance index (C-index), sensitivity, and specificity were used to evaluate the performance of the prediction models to investigate the predictive value of machine learning for platinum chemotherapy responses in patients with ovarian cancer.

          Results

          A total of 1749 articles were examined, and 19 of them involving 39 models were eligible for this study. The most commonly used modeling methods were logistic regression (16/39, 41%), Extreme Gradient Boosting (4/39, 10%), and support vector machine (4/39, 10%). The training cohort reported C-index in 39 predictive models, with a pooled value of 0.806; the validation cohort reported C-index in 12 predictive models, with a pooled value of 0.831. Support vector machine performed well in both the training and validation cohorts, with a C-index of 0.942 and 0.879, respectively. The pooled sensitivity was 0.890, and the pooled specificity was 0.790 in the training cohort.

          Conclusions

          Machine learning can effectively predict how patients with ovarian cancer respond to platinum-based chemotherapy and may provide a reference for the development or updating of subsequent scoring systems.

          Related collections

          Most cited references62

          • Record: found
          • Abstract: found
          • Article: not found

          Integrated Genomic Analyses of Ovarian Carcinoma

          Summary The Cancer Genome Atlas (TCGA) project has analyzed mRNA expression, miRNA expression, promoter methylation, and DNA copy number in 489 high-grade serous ovarian adenocarcinomas (HGS-OvCa) and the DNA sequences of exons from coding genes in 316 of these tumors. These results show that HGS-OvCa is characterized by TP53 mutations in almost all tumors (96%); low prevalence but statistically recurrent somatic mutations in 9 additional genes including NF1, BRCA1, BRCA2, RB1, and CDK12; 113 significant focal DNA copy number aberrations; and promoter methylation events involving 168 genes. Analyses delineated four ovarian cancer transcriptional subtypes, three miRNA subtypes, four promoter methylation subtypes, a transcriptional signature associated with survival duration and shed new light on the impact on survival of tumors with BRCA1/2 and CCNE1 aberrations. Pathway analyses suggested that homologous recombination is defective in about half of tumors, and that Notch and FOXM1 signaling are involved in serous ovarian cancer pathophysiology.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Ovarian cancer statistics, 2018

            In 2018, there will be approximately 22,240 new cases of ovarian cancer diagnosed and 14,070 ovarian cancer deaths in the United States. Herein, the American Cancer Society provides an overview of ovarian cancer occurrence based on incidence data from nationwide population-based cancer registries and mortality data from the National Center for Health Statistics. The status of early detection strategies is also reviewed. In the United States, the overall ovarian cancer incidence rate declined from 1985 (16.6 per 100,000) to 2014 (11.8 per 100,000) by 29% and the mortality rate declined between 1976 (10.0 per 100,000) and 2015 (6.7 per 100,000) by 33%. Ovarian cancer encompasses a heterogenous group of malignancies that vary in etiology, molecular biology, and numerous other characteristics. Ninety percent of ovarian cancers are epithelial, the most common being serous carcinoma, for which incidence is highest in non-Hispanic whites (NHWs) (5.2 per 100,000) and lowest in non-Hispanic blacks (NHBs) and Asians/Pacific Islanders (APIs) (3.4 per 100,000). Notably, however, APIs have the highest incidence of endometrioid and clear cell carcinomas, which occur at younger ages and help explain comparable epithelial cancer incidence for APIs and NHWs younger than 55 years. Most serous carcinomas are diagnosed at stage III (51%) or IV (29%), for which the 5-year cause-specific survival for patients diagnosed during 2007 through 2013 was 42% and 26%, respectively. For all stages of epithelial cancer combined, 5-year survival is highest in APIs (57%) and lowest in NHBs (35%), who have the lowest survival for almost every stage of diagnosis across cancer subtypes. Moreover, survival has plateaued in NHBs for decades despite increasing in NHWs, from 40% for cases diagnosed during 1992 through 1994 to 47% during 2007 through 2013. Progress in reducing ovarian cancer incidence and mortality can be accelerated by reducing racial disparities and furthering knowledge of etiology and tumorigenesis to facilitate strategies for prevention and early detection. CA Cancer J Clin 2018;68:284-296. © 2018 American Cancer Society.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Epithelial ovarian cancer

              Epithelial ovarian cancer generally presents at an advanced stage and is the most common cause of gynaecological cancer death. Treatment requires expert multidisciplinary care. Population-based screening has been ineffective, but new approaches for early diagnosis and prevention that leverage molecular genomics are in development. Initial therapy includes surgery and adjuvant therapy. Epithelial ovarian cancer is composed of distinct histological subtypes with unique genomic characteristics, which are improving the precision and effectiveness of therapy, allowing discovery of predictors of response such as mutations in breast cancer susceptibility genes BRCA1 and BRCA2, and homologous recombination deficiency for DNA damage response pathway inhibitors or resistance (cyclin E1). Rapidly evolving techniques to measure genomic changes in tumour and blood allow for assessment of sensitivity and emergence of resistance to therapy, and might be accurate indicators of residual disease. Recurrence is usually incurable, and patient symptom control and quality of life are key considerations at this stage. Treatments for recurrence have to be designed from a patient's perspective and incorporate meaningful measures of benefit. Urgent progress is needed to develop evidence and consensus-based treatment guidelines for each subgroup, and requires close international cooperation in conducting clinical trials through academic research groups such as the Gynecologic Cancer Intergroup.
                Bookmark

                Author and article information

                Contributors
                Journal
                J Med Internet Res
                J Med Internet Res
                JMIR
                Journal of Medical Internet Research
                JMIR Publications (Toronto, Canada )
                1439-4456
                1438-8871
                2024
                22 January 2024
                : 26
                : e48527
                Affiliations
                [1 ] Department of First Clinical Medical College Heilongjiang University of Chinese Medicine Harbin China
                [2 ] Basic Medical College Heilongjiang University of Chinese Medicine Harbin China
                [3 ] Department of Gynecology First Affiliated Hospital of Heilongjiang University of Chinese Medicine Harbin China
                Author notes
                Corresponding Author: Xiaoling Feng doctorfxl@ 123456163.com
                Author information
                https://orcid.org/0000-0002-1133-5047
                https://orcid.org/0000-0002-1817-4530
                https://orcid.org/0000-0001-9784-8179
                https://orcid.org/0009-0005-0079-831X
                https://orcid.org/0000-0002-1632-6588
                https://orcid.org/0000-0003-1389-2389
                https://orcid.org/0000-0002-8724-8855
                Article
                v26i1e48527
                10.2196/48527
                10845031
                38252469
                323cc7ec-3e20-4df7-8db7-27f97028d6cb
                ©Qingyi Wang, Zhuo Chang, Xiaofang Liu, Yunrui Wang, Chuwen Feng, Yunlu Ping, Xiaoling Feng. Originally published in the Journal of Medical Internet Research (https://www.jmir.org), 22.01.2024.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License ( https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work, first published in the Journal of Medical Internet Research, is properly cited. The complete bibliographic information, a link to the original publication on https://www.jmir.org/, as well as this copyright and license information must be included.

                History
                : 26 April 2023
                : 10 November 2023
                : 23 November 2023
                : 24 November 2023
                Categories
                Review
                Review

                Medicine
                ovarian cancer,platinum chemotherapy response,machine learning,platinum-based therapy,predictive potential

                Comments

                Comment on this article