19
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Budesonide-Loaded Guar Gum Microspheres for Colon Delivery: Preparation, Characterization and in Vitro/in Vivo Evaluation

      research-article
      , *
      International Journal of Molecular Sciences
      MDPI
      budesonide, colon delivery, microspheres, in vitro release, pharmacokinetics

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          A novel budesonide (BUD) colon delivery release system was developed by using a natural polysaccharide, guar gum. The rigidity of the microspheres was induced by a chemical cross-linking method utilizing glutaraldehyde as the cross-linker. The mean particle size of the microspheres prepared was found to be 15.21 ± 1.32 µm. The drug loading and entrapment efficiency of the formulation were 17.78% ± 2.31% and 81.6% ± 5.42%, respectively. The microspheres were spherical in shape with a smooth surface, and the size was uniform. The in vitro release profiles indicated that the release of BUD from the microspheres exhibited a sustained release behavior. The model that fitted best for BUD released from the microspheres was the Higuchi kinetic model with a correlation coefficient r = 0.9993. A similar phenomenon was also observed in a pharmacokinetic study. The prolongation of the half-life ( t 1/2), enhanced residence time (mean residence time, MRT) and decreased total clearance (CL) indicated that BUD microspheres could prolong the acting time of BUD in vivo. In addition, BUD guar gum microspheres are thought to have the potential to maintain BUD concentration within target ranges for a long time, decreasing the side effects caused by concentration fluctuation, ensuring the efficiency of treatment and improving patient compliance by reducing dosing frequency. None of the severe signs, like the appearance of epithelial necrosis and the sloughing of epithelial cells, were detected.

          Related collections

          Most cited references20

          • Record: found
          • Abstract: not found
          • Article: not found

          American Gastroenterological Association Institute technical review on corticosteroids, immunomodulators, and infliximab in inflammatory bowel disease.

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Polysaccharides for colon targeted drug delivery.

            Colon targeted drug delivery has the potential to deliver bioactive agents for the treatment of a variety of colonic diseases and to deliver proteins and peptides to the colon for their systemic absorption. Various strategies, currently available to target the release of drugs to colon, include formation of prodrug, coating of pH-sensitive polymers, use of colon-specific biodegradable polymers, timed released systems, osmotic systems, and pressure controlled drug delivery systems. Among the different approaches to achieve targeted drug release to the colon, the use of polymers especially biodegradable by colonic bacteria holds great promise. Polysaccharidases are bacterial enzymes that are available in sufficient quantity to be exploited in colon targeting of drugs. Based on this approach, various polysaccharides have been investigated for colon-specific drug release. These polysaccharides include pectin, guar gum, amylose, inulin, dextran, chitosan, and chondroitin sulphate. This family of natural polymers has an appeal to drug delivery as it is comprised of polymers with a large number of derivatizable groups, a wide range of molecular weights, varying chemical compositions, and, for the most part, low toxicity and biodegradability yet high stability. The most favorable property of these materials is their approval as pharmaceutical excipients.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Pharmaceutical approaches to colon targeted drug delivery systems.

              Although oral delivery has become a widely accepted route of administration of therapeutic drugs, the gastrointestinal tract presents several formidable barriers to drug delivery. Colonic drug delivery has gained increased importance not just for the delivery of the drugs for the treatment of local diseases associated with the colon but also for its potential for the delivery of proteins and therapeutic peptides. To achieve successful colonic delivery, a drug needs to be protected from absorption and /or the environment of the upper gastrointestinal tract (GIT) and then be abruptly released into the proximal colon, which is considered the optimum site for colon-targeted delivery of drugs. Colon targeting is naturally of value for the topical treatment of diseases of colon such as Chron's diseases, ulcerative colitis, colorectal cancer and amebiasis. Peptides, proteins, oligonucleotides and vaccines pose potential candidature for colon targeted drug delivery. The various strategies for targeting orally administered drugs to the colon include covalent linkage of a drug with a carrier, coating with pH-sensitive polymers, formulation of timed released systems, exploitation of carriers that are degraded specifically by colonic bacteria, bioadhesive systems and osmotic controlled drug delivery systems. Various prodrugs (sulfasalazine, ipsalazine, balsalazine and olsalazine) have been developed that are aimed to deliver 5-amino salicylic acid (5-ASA) for localized chemotherapy of inflammatory bowl disease (IBD). Microbially degradable polymers especially azo crosslinked polymers have been investigated for use in targeting of drugs to colon. Certain plant polysaccharides such as amylose, inulin, pectin and guar gum remains unaffected in the presence of gastrointestinal enzymes and pave the way for the formulation of colon targeted drug delivery systems. The concept of using pH as a rigger to release a drug in the colon is based on the pH conditions that vary continuously down the gastrointestinal tract. Times dependent drug delivery systems have been developed that are based on the principle to prevent release of drug until 3-4 h after leaving the stomach. Redox sensitive polymers and bioadhesive systems have also been exploited to deliver the drugs into the colon. The approach that is based on the formation of prodrug involves covalent linkage between drug and carrier. The type of linkage that is formed between drug and carrier would decide the triggering mechanism for the release of drug in colon. The presence of azo reductase enzymes play pivotal role in the release of drug from azo bond prodrugs while glycosidase activity of the colonic microflora is responsible for liberation of drugs from glycosidic prodrugs. Release of drugs from azo polymer coated dosage forms is supposed to take place after reduction and thus cleavage of the azo bonds by the azoreductase enzymes present in the colonic microflora. Natural polysaccharides have been used as tools to deliver the drugs specifically to the colon. These polysaccharides remain intact in the physiological environment of stomach and small intestine but once the dosage form enters into colon, it is acted upon by polysaccharidases, which degrades the polysaccharide and releases the drug into the vicinity of bioenvironment of colon. However, they should be protected while gaining entry into stomach and small intestine due to enormous swelling and hydrophilic properties of polysaccharides. This has been achieved either by chemical crosslinking or by addition of a protective coat. Formulation coated with enteric polymers releases drug when pH move towards alkaline range while as the multicoated formulation passes the stomach, the drug is released after a lag time of 3-5 h that is equivalent to small intestinal transit time. Drug coated with a bioadhesive polymer that selectively provides adhesion to the colonic mucosa may release drug in the colon. Improved drug delivery systems are required for drugs currently in use to treat localized diseases of the colon. The advantages of targeting drugs specifically to the diseased colon are reduced incidence of systemic side effects, lower dose of drug, supply of the drug to the biophase only when it is required and maintenance of the drug in its intact form as close as possible to the target site.
                Bookmark

                Author and article information

                Contributors
                Role: Academic Editor
                Journal
                Int J Mol Sci
                Int J Mol Sci
                ijms
                International Journal of Molecular Sciences
                MDPI
                1422-0067
                26 January 2015
                February 2015
                : 16
                : 2
                : 2693-2704
                Affiliations
                Department of Gastroenterology Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China; E-Mail: liuye@ 123456renji.com
                Author notes
                [* ]Author to whom correspondence should be addressed; E-Mail: zhouhongrj@ 123456163.com ; Tel.: +86-21-5875-2345; Fax: +86-21-5839-4262.
                Article
                ijms-16-02693
                10.3390/ijms16022693
                4346859
                25629228
                31b9637f-37ee-4d60-ba0f-8d8fae775679
                © 2015 by the authors; licensee MDPI, Basel, Switzerland.

                This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 12 December 2014
                : 21 January 2015
                Categories
                Article

                Molecular biology
                budesonide,colon delivery,microspheres,in vitro release,pharmacokinetics
                Molecular biology
                budesonide, colon delivery, microspheres, in vitro release, pharmacokinetics

                Comments

                Comment on this article