19
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Q-Learning: Theory and Applications

      1 , 1
      Annual Review of Statistics and Its Application
      Annual Reviews

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Q-learning, originally an incremental algorithm for estimating an optimal decision strategy in an infinite-horizon decision problem, now refers to a general class of reinforcement learning methods widely used in statistics and artificial intelligence. In the context of personalized medicine, finite-horizon Q-learning is the workhorse for estimating optimal treatment strategies, known as treatment regimes. Infinite-horizon Q-learning is also increasingly relevant in the growing field of mobile health. In computer science, Q-learning methods have achieved remarkable performance in domains such as game-playing and robotics. In this article, we ( a) review the history of Q-learning in computer science and statistics, ( b) formalize finite-horizon Q-learning within the potential outcomes framework and discuss the inferential difficulties for which it is infamous, and ( c) review variants of infinite-horizon Q-learning and the exploration-exploitation problem, which arises in decision problems with a long time horizon. We close by discussing issues arising with the use of Q-learning in practice, including arguments for combining Q-learning with direct-search methods; sample size considerations for sequential, multiple assignment randomized trials; and possibilities for combining Q-learning with model-based methods.

          Related collections

          Most cited references64

          • Record: found
          • Abstract: not found
          • Article: not found

          The central role of the propensity score in observational studies for causal effects

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Human-level control through deep reinforcement learning.

            The theory of reinforcement learning provides a normative account, deeply rooted in psychological and neuroscientific perspectives on animal behaviour, of how agents may optimize their control of an environment. To use reinforcement learning successfully in situations approaching real-world complexity, however, agents are confronted with a difficult task: they must derive efficient representations of the environment from high-dimensional sensory inputs, and use these to generalize past experience to new situations. Remarkably, humans and other animals seem to solve this problem through a harmonious combination of reinforcement learning and hierarchical sensory processing systems, the former evidenced by a wealth of neural data revealing notable parallels between the phasic signals emitted by dopaminergic neurons and temporal difference reinforcement learning algorithms. While reinforcement learning agents have achieved some successes in a variety of domains, their applicability has previously been limited to domains in which useful features can be handcrafted, or to domains with fully observed, low-dimensional state spaces. Here we use recent advances in training deep neural networks to develop a novel artificial agent, termed a deep Q-network, that can learn successful policies directly from high-dimensional sensory inputs using end-to-end reinforcement learning. We tested this agent on the challenging domain of classic Atari 2600 games. We demonstrate that the deep Q-network agent, receiving only the pixels and the game score as inputs, was able to surpass the performance of all previous algorithms and achieve a level comparable to that of a professional human games tester across a set of 49 games, using the same algorithm, network architecture and hyperparameters. This work bridges the divide between high-dimensional sensory inputs and actions, resulting in the first artificial agent that is capable of learning to excel at a diverse array of challenging tasks.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Extremely randomized trees

                Bookmark

                Author and article information

                Journal
                Annual Review of Statistics and Its Application
                Annu. Rev. Stat. Appl.
                Annual Reviews
                2326-8298
                2326-831X
                March 09 2020
                March 09 2020
                : 7
                : 1
                : 279-301
                Affiliations
                [1 ]Department of Statistics, North Carolina State University, Raleigh, North Carolina 27695, USA;
                Article
                10.1146/annurev-statistics-031219-041220
                30ba6284-9957-4881-93bc-aabb16477149
                © 2020
                History

                Comments

                Comment on this article