7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Enzymatic cometabolic biotransformation of organic micropollutants in wastewater treatment plants: A review

      , , ,
      Bioresource Technology
      Elsevier BV

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references110

          • Record: found
          • Abstract: found
          • Article: not found

          A review on the occurrence of micropollutants in the aquatic environment and their fate and removal during wastewater treatment.

          Micropollutants are emerging as a new challenge to the scientific community. This review provides a summary of the recent occurrence of micropollutants in the aquatic environment including sewage, surface water, groundwater and drinking water. The discharge of treated effluent from WWTPs is a major pathway for the introduction of micropollutants to surface water. WWTPs act as primary barriers against the spread of micropollutants. WWTP removal efficiency of the selected micropollutants in 14 countries/regions depicts compound-specific variation in removal, ranging from 12.5 to 100%. Advanced treatment processes, such as activated carbon adsorption, advanced oxidation processes, nanofiltration, reverse osmosis, and membrane bioreactors can achieve higher and more consistent micropollutant removal. However, regardless of what technology is employed, the removal of micropollutants depends on physico-chemical properties of micropollutants and treatment conditions. The evaluation of micropollutant removal from municipal wastewater should cover a series of aspects from sources to end uses. After the release of micropollutants, a better understanding and modeling of their fate in surface water is essential for effectively predicting their impacts on the receiving environment. Copyright © 2013 Elsevier B.V. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found
            Is Open Access

            A review on emerging contaminants in wastewaters and the environment: current knowledge, understudied areas and recommendations for future monitoring.

            This review identifies understudied areas of emerging contaminant (EC) research in wastewaters and the environment, and recommends direction for future monitoring. Non-regulated trace organic ECs including pharmaceuticals, illicit drugs and personal care products are focused on due to ongoing policy initiatives and the expectant broadening of environmental legislation. These ECs are ubiquitous in the aquatic environment, mainly derived from the discharge of municipal wastewater effluents. Their presence is of concern due to the possible ecological impact (e.g., endocrine disruption) to biota within the environment. To better understand their fate in wastewaters and in the environment, a standardised approach to sampling is needed. This ensures representative data is attained and facilitates a better understanding of spatial and temporal trends of EC occurrence. During wastewater treatment, there is a lack of suspended particulate matter analysis due to further preparation requirements and a lack of good analytical approaches. This results in the under-reporting of several ECs entering wastewater treatment works (WwTWs) and the aquatic environment. Also, sludge can act as a concentrating medium for some chemicals during wastewater treatment. The majority of treated sludge is applied directly to agricultural land without analysis for ECs. As a result there is a paucity of information on the fate of ECs in soils and consequently, there has been no driver to investigate the toxicity to exposed terrestrial organisms. Therefore a more holistic approach to environmental monitoring is required, such that the fate and impact of ECs in all exposed environmental compartments are studied. The traditional analytical approach of applying targeted screening with low resolution mass spectrometry (e.g., triple quadrupoles) results in numerous chemicals such as transformation products going undetected. These can exhibit similar toxicity to the parent EC, demonstrating the necessity of using an integrated analytical approach which compliments targeted and non-targeted screening with biological assays to measure ecological impact. With respect to current toxicity testing protocols, failure to consider the enantiomeric distribution of chiral compounds found in the environment, and the possible toxicological differences between enantiomers is concerning. Such information is essential for the development of more accurate environmental risk assessment.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Occurrence and fate of emerging contaminants in municipal wastewater treatment plants from different geographical regions-a review.

              Emerging contaminants, such as antibiotics, pharmaceuticals, personal care products, hormones, and artificial sweeteners, are recognized as new classes of water contaminants due to their proven or potential adverse effects on aquatic ecosystems and human health. This review provides comprehensive data on the occurrence of 60 emerging contaminants (ECs) in influent, treated effluent, sludge, and biosolids in wastewater treatment plants (WWTPs). In particular, data on the occurrence of ECs in the influents and effluents of WWTPs are systematically summarized and categorized according to geographical regions (Asia, Europe, and North America). The occurrence patterns of ECs in raw influent and treated effluents of WWTPs between geographical regions were compared and evaluated. Concentrations of most ECs in raw influent in Asian region tend to be higher than those in European and North American countries. Many antibiotics were detected in the influents and effluents of WWTPs at concentrations close to or exceeding the predicted no-effect concentrations (PNECs) for resistance selection. The efficacy of EC removal by sorption and biodegradation during wastewater treatment processes are discussed in light of kinetics and parameters, such as sorption coefficients (Kd) and biodegradation constants (kbiol), and physicochemical properties (i.e. log Kowand pKa). Commonly used sampling and monitoring strategies are critically reviewed. Analytical research needs are identified, and novel investigative approaches for future monitoring studies are proposed.
                Bookmark

                Author and article information

                Journal
                Bioresource Technology
                Bioresource Technology
                Elsevier BV
                09608524
                January 2022
                January 2022
                : 344
                : 126291
                Article
                10.1016/j.biortech.2021.126291
                34752884
                30b51bb5-492e-43ba-abe1-1fdb20b80ce5
                © 2022

                https://www.elsevier.com/tdm/userlicense/1.0/

                http://creativecommons.org/licenses/by-nc-nd/4.0/

                History

                Comments

                Comment on this article