8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Laying hens under smallholder conditions: laying performance, growth and bone quality of tibia and femur including essential elements

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The study aimed to assess laying performance, growth rate, and bone quality properties of tibia and femur bones of various genotypes of laying hens, including determining essential element composition at the end of the laying cycle in smallholder conditions. The study included three genotypes of laying hens; Czech golden spotted ( CGS), White Leghorn ( LE) and Dominant Partridge D300 ( D300) hens. In total, 180 hens (60/genotype) were used in 3 replications (20 hens/replication). The eggs were collected to determine egg lay and hen-day egg production. Additionally, feed consumption was recorded to determine feed consumption per day or egg, resp. The mortality rate was recorded. Hens were individually weighed every 10 wk to analyze the growth performance and body weight changes during the laying cycle. The differences in performance characteristics were observed as significant in all studied parameters. The bone quality analysis consisted of the determination of bone weight, length, width, and fracture toughness. Furthermore, dry matter, ash, and selected elements, which included boron (B), calcium (Ca), cadmium (Cd), copper (Cu), iron (Fe), magnesium (Mg), manganese (Mn), sodium (Na), phosphorus (P), lead (Pb), and zinc (Zn) were assessed. Regarding the results of tibia and femur bones, the effect of genotype was determined as significant in all evaluated properties. In terms of element composition, all evaluated elements significantly differed among the genotypes in the tibia (with one exception of Cu) and in the femur (with one exception of Cd). In conclusion, our results showed that hens’ performance, production quality, mortality and bone properties significantly differed among genotypes under smallholder conditions. Thus, every genotype needs to be carefully considered, when the rearing conditions are set.

          Related collections

          Most cited references64

          • Record: found
          • Abstract: found
          • Article: not found

          Cellular mechanisms of cadmium-induced toxicity: a review.

          Cadmium is a widespread toxic pollutant of occupational and environmental concern because of its diverse toxic effects: extremely protracted biological half-life (approximately 20-30 years in humans), low rate of excretion from the body and storage predominantly in soft tissues (primarily, liver and kidneys). It is an extremely toxic element of continuing concern because environmental levels have risen steadily due to continued worldwide anthropogenic mobilization. Cadmium is absorbed in significant quantities from cigarette smoke, food, water and air contamination and is known to have numerous undesirable effects in both humans and animals. Cadmium has a diversity of toxic effects including nephrotoxicity, carcinogenicity, teratogenicity and endocrine and reproductive toxicities. At the cellular level, cadmium affects cell proliferation, differentiation, apoptosis and other cellular activities. Current evidence suggests that exposure to cadmium induces genomic instability through complex and multifactorial mechanisms. Most important seems to be cadmium interaction with DNA repair mechanism, generation of reactive oxygen species and induction of apoptosis. In this article, we have reviewed recent developments and findings on cadmium toxicology.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Historical perspectives on cadmium toxicology.

            The first health effects of cadmium (Cd) were reported already in 1858. Respiratory and gastrointestinal symptoms occurred among persons using Cd-containing polishing agent. The first experimental toxicological studies are from 1919. Bone effects and proteinuria in humans were reported in the 1940's. After World War II, a bone disease with fractures and severe pain, the itai-itai disease, a form of Cd-induced renal osteomalacia, was identified in Japan. Subsequently, the toxicokinetics and toxicodynamics of Cd were described including its binding to the protein metallothionein. International warnings of health risks from Cd-pollution were issued in the 1970's. Reproductive and carcinogenic effects were studied at an early stage, but a quantitative assessment of these effects in humans is still subject to considerable uncertainty. The World Health Organization in its International Program on Chemical Safety, WHO/IPCS (1992) (Cadmium. Environmental Health Criteria Document 134, IPCS. WHO, Geneva, 1-280.) identified renal dysfunction as the critical effect and a crude quantitative evaluation was presented. In the 1990's and 2000 several epidemiological studies have reported adverse health effects, sometimes at low environmental exposures to Cd, in population groups in Japan, China, Europe and USA (reviewed in other contributions to the present volume). The early identification of an important role of metallothionein in cadmium toxicology formed the basis for recent studies using biomarkers of susceptibility to development of Cd-related renal dysfunction such as gene expression of metallothionein in peripheral lymphocytes and autoantibodies against metallothionein in blood plasma. Findings in these studies indicate that very low exposure levels to cadmium may give rise to renal dysfunction among sensitive subgroups of human populations such as persons with diabetes.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Increasing persistency in lay and stabilising egg quality in longer laying cycles. What are the challenges?

              Abstract In the past 50 years, selection starting initially at the breed level and then using quantitative genetics coupled with a sophisticated breeding pyramid, has resulted in a very productive hybrid for a variety of traits associated with egg production. One major trait currently being developed further is persistency of lay and the concept of the “long life” layer. Persistency in lay however cannot be achieved without due consideration of how to sustain egg quality and the health and welfare of the birds in longer laying cycles. These multiple goals require knowledge and consideration of the bird’s physiology, nutritional requirements, which vary depending on age and management system, reproductive status and choice of the selection criteria applied. The recent advent of molecular genetics offers considerable hope that these multiple elements can be balanced for the good of all in the industry including the hens. The “long life” layer, which will be capable of producing 500 eggs in a laying cycle of 100 weeks, is therefore on the horizon, bringing with it the benefits of a more efficient utilisation of diminishing resources, including land, water, raw materials for feed as well as a reduction in waste, and an overall reduced carbon footprint.
                Bookmark

                Author and article information

                Contributors
                Journal
                Poult Sci
                Poult Sci
                Poultry Science
                Elsevier
                0032-5791
                1525-3171
                22 April 2022
                July 2022
                22 April 2022
                : 101
                : 7
                : 101927
                Affiliations
                [* ]Czech University of Life Sciences Prague, Faculty of Agrobiology, Food and Natural Resources, Department of Animal Science, Prague– Suchdol 165 00, Czech Republic
                []Czech University of Life Sciences Prague, Faculty of Agrobiology, Food and Natural Resources, Department of Soil Science and Soil Protection, Prague – Suchdol 165 00, Czech Republic
                Author notes
                [1 ]Corresponding author: krausa@ 123456af.czu.cz
                Article
                S0032-5791(22)00219-X 101927
                10.1016/j.psj.2022.101927
                9178482
                35679666
                308afe0f-a1ea-4ea2-a257-0c40dff85699
                © 2022 The Authors

                This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

                History
                : 22 February 2022
                : 18 April 2022
                Categories
                MANAGEMENT AND PRODUCTION

                calcium,femur,magnesium,phosphorus,tibia
                calcium, femur, magnesium, phosphorus, tibia

                Comments

                Comment on this article