25
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      A Tutorial on the Stability and Bifurcation Analysis of the Electromechanical Behaviour of Soft Materials

      ,
      Applied Mechanics Reviews
      ASME International

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Soft materials, such as liquids, polymers, foams, gels, colloids, granular materials, and most soft biological materials, play an important role in our daily lives. From a mechanical viewpoint, soft materials can easily achieve large deformations due to their low elastic moduli; meanwhile, surface instabilities, including wrinkles, creases, folds, and ridges, among others, are often observed. In particular, soft dielectrics subject to electrical stimuli can achieve significantly large deformations that are often accompanied by instabilities. While instabilities are often thought to cause failures in the engineering context and carry a negative connotation, they can also be harnessed for various applications such as surface patterning, giant actuation strain, and energy harvesting. In the biological world, instability and bifurcation phenomena often precede important events such as endocytosis, and cell fusion, among others. Stability and bifurcation analysis (especially for soft materials) is challenging and often present a formidable barrier to entry in this important field. A multidisciplinary audience may lack the background in one or more areas that are needed to carry out the requisite modeling or even understand papers in the literature. Furthermore, combining electrostatics together with large deformations brings its own challenges. In this article, we provide a tutorial on the basics of stability and bifurcation analysis in the context of soft electromechanical materials. The aim of the article is to use simple examples and “gently” lead a reader, unfamiliar with either stability analysis or electrostatics of deformable media, to develop the ability to understand the pertinent literature that already exists and position them to embark on state-of-the-art research on this topic.

          Related collections

          Most cited references198

          • Record: found
          • Abstract: found
          • Article: not found

          Design, fabrication and control of soft robots.

          Conventionally, engineers have employed rigid materials to fabricate precise, predictable robotic systems, which are easily modelled as rigid members connected at discrete joints. Natural systems, however, often match or exceed the performance of robotic systems with deformable bodies. Cephalopods, for example, achieve amazing feats of manipulation and locomotion without a skeleton; even vertebrates such as humans achieve dynamic gaits by storing elastic energy in their compliant bones and soft tissues. Inspired by nature, engineers have begun to explore the design and control of soft-bodied robots composed of compliant materials. This Review discusses recent developments in the emerging field of soft robotics.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            How the Venus flytrap snaps.

            The rapid closure of the Venus flytrap (Dionaea muscipula) leaf in about 100 ms is one of the fastest movements in the plant kingdom. This led Darwin to describe the plant as "one of the most wonderful in the world". The trap closure is initiated by the mechanical stimulation of trigger hairs. Previous studies have focused on the biochemical response of the trigger hairs to stimuli and quantified the propagation of action potentials in the leaves. Here we complement these studies by considering the post-stimulation mechanical aspects of Venus flytrap closure. Using high-speed video imaging, non-invasive microscopy techniques and a simple theoretical model, we show that the fast closure of the trap results from a snap-buckling instability, the onset of which is controlled actively by the plant. Our study identifies an ingenious solution to scaling up movements in non-muscular engines and provides a general framework for understanding nastic motion in plants.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              A three-dimensional constitutive model for the large stretch behavior of rubber elastic materials

                Bookmark

                Author and article information

                Journal
                Applied Mechanics Reviews
                ASME International
                0003-6900
                2379-0407
                July 01 2023
                July 01 2023
                January 23 2023
                : 75
                : 4
                Article
                10.1115/1.4056303
                305330c2-117e-4ffd-8784-6e4c058b22a5
                © 2023

                https://www.asme.org/publications-submissions/publishing-information/legal-policies

                History

                Comments

                Comment on this article